A214284 Characteristic function of squares or five times squares.
1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0
Offset: 0
Examples
G.f. = 1 + x + x^4 + x^5 + x^9 + x^16 + x^20 + x^25 + x^36 + x^45 + x^49 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. Cooper and M. Hirschhorn, On some infinite product identities, Rocky Mountain J. Math., 31 (2001) 131-139. see p. 134 Theorem 4.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ Series[ (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^5]) / 2, {q, 0, n}], {q, 0, n}]; a[ n_] := If[ n < 0, 0, Boole[ OddQ [ Length @ Divisors @ n] || OddQ [ Length @ Divisors[5 n]]]];
-
PARI
{a(n) = issquare(n) || issquare(5*n)};
-
PARI
{a(n) = if( n<1, n==0, direuler( p=2, n, if( p==5, 1 + X, 1) / (1 - X^2))[n])};
Formula
Expansion of f(q, q^9) * f(-q^8, -q^12) / f(-q^4, -q^16) in powers of q where f(, ) is Ramanujan's general theta function.
Expansion of f(q^3, q^7) * f(-q^2, -q^3) / f(-q, -q^4) in powers of q where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [1, -1, 0, 1, 0, 0, 0, -1, 1, -1, 1, -1, 0, 0, 0, 1, 0, -1, 1, -1, ...].
a(n) is multiplicative with a(0) = a(5^e) = 1, a(p^e) = 1 if e is even, 0 otherwise.
G.f.: (theta_3(q) + theta_3(q^5)) / 2 = 1 + (Sum_{k>0} x^(k^2) + x^(5*k^2)).
Dirichlet g.f.: zeta(2*s) * (1 + 5^-s).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n + 1) = A127693(n). a(5*n) = a(n).
Sum_{k=0..n} a(k) ~ c * sqrt(n), where c = 1+1/sqrt(5) = 1.447213... (A344212). - Amiram Eldar, Sep 14 2023
Comments