cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A213940 Triangle with entry a(n,m) giving the number of bracelets of n beads (dihedral D_n symmetry) with n colors available for each bead, but only m distinct fixed colors, say c[1],...,c[m], are present, with m from {1,...,n} and n>=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 3, 1, 3, 6, 6, 12, 1, 7, 20, 26, 30, 60, 1, 8, 40, 93, 150, 180, 360, 1, 18, 106, 424, 633, 1050, 1260, 2520, 1, 22, 304, 1180, 3260, 5040, 8400, 10080, 20160, 1, 46, 731, 4844, 16212, 29244, 45360, 75600, 90720, 181440
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2012

Keywords

Comments

This triangle is obtained from the partition array A213939 by summing in row n, for n>=1, all entries related to partitions of n with the same number of parts m.
a(n,m) is the number of bracelets of n beads (dihedral D_n symmetry) corresponding to the representative color multinomials obtained from all partitions of n with m parts by 'exponentiation', hence only m from the available n colors are present. As a representative multinomial of each of the p(n,m)=A008284(n,m) such m-color classes we take the one where the considered m part partition of n, [p[1],...,p[m]], written in nonincreasing order, is distributed as exponents on the color indices like c[1]^p[1]*...*c[m]^p[m]. That is only the first m colors from the n available ones are involved.
See the comments on A212359 for the Abramowitz-Stegun (A-St) order of partitions, and the 'exponentiation' to obtain multisets, used to encode color multinomials, from partitions.
The row sums of this triangle coincide with the ones of array A213939, and they are given by A213943.
Number of n-length bracelets w over a k-ary alphabet {a1,a2,...,ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226874). - Andrew Howroyd, Sep 26 2017

Examples

			n\m  1  2   3    4     5     6     7     8     9     10 ...
1    1
2    1  1
3    1  1   1
4    1  3   2    3
5    1  3   6    6    12
6    1  7  20   26    30    60
7    1  8  40   93   150   180   360
8    1 18 106  424   633  1050  1260  2520
9    1 22 304 1180  3260  5040  8400 10080 20160
10   1 46 731 4844 16212 29244 45360 75600 90720 181440
...
a(5,3) = 2 + 4 = 6, from A213939(5,4) + A213939(5,5), because k(5,3,1) = 4 and p(5,3) = 2.
a(2,1) = 1 because the partition [2] of n=2 with part number m=1 corresponds to the representative color multinomial (here monomial) c[1]^2 = c[1]*c[1], and there is one such representative bracelet. There is another bracelet color monomial in this class of n=2 colors where only m=1 color is active: c[2]*c[2]. See the triangle entry A213941(2,1)=2. The same holds for the necklace case.
a(3,1) = 1 from the color monomial representative c[1]^3. This class has 2 other members: c[2]^3 and c[3]^3. See A213941(3,1)=3. The same holds for the necklace case.
Like in the necklace case one has in general a(n,1)=1 and A213941(n,1) = n from the partition [n] providing the color signature and a representative c[1]^n.
a(3,2) = 1 from the representative color multinomial c[1]^2*c[2] (from the m=2 partition [2,1] of n=3) leading to just one representative bracelet (and necklace) cyclic(112) (when one uses j for color c[j]). The whole class consists of A213941(3,2)=6 bracelets (or necklaces): cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332).
a(3,3) = 1. The representative color multinomial is c[1]*c[2]*c[3] (from the m=3 partition [1,1,1]). There is only one bracelet cyclic(1,2,3) which constitutes already the whole class (A213941(3,3)=1). The necklace cyclic(1,3,2) becomes equivalent under D_3.
a(4,2) = 3 from two representative color multinomials c[1]^3*c[2] and c[1]^2*c[2]^2 (from the two m=2 partitions of n=4: [3,1] and [2,2]). The first one has one representative bracelet, namely cyclic(1112), the second one leads to the two representative bracelets: cyclic(1122) and cyclic(1212). Together these are the 3 bracelets counted by a(4,2). The first color class c[.]^3*c[.] consists of 4*3=12 bracelets, when all 4 colors are used. The second one consists of 2*6=12 bracelets. Together they sum up to the 24 bracelets counted by A213941(4,2). In this example the necklace case does not differ from the bracelet one.
		

Crossrefs

Columns k=2..5 are A213942, A214307, A214309, A214311.
Cf. A213934 (cyclic symmetry).

Programs

  • PARI
    Cyc(v)={my(s=vecsum(v)); sumdiv(gcd(v), d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s}
    CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v));  if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))}
    T(n,k)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [k,k]); t/2}
    for(n=1, 10, for(k=1,n, print1(T(n,k), ", ")); print); \\ Andrew Howroyd, Sep 26 2017
    
  • PARI
    \\ faster version; here U is A226874 as vector of polynomials.
    U(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))}
    T(n)={my(t=U(n)); vector(n, n, vector(n, k, ((1/n)*sumdiv(n, d, eulerphi(n/d) * polcoeff(t[d+1], k)) + if(n%2, sum(d=0, (n-1)/2, binomial((n-1)/2, d)*polcoeff(t[d+1], (k-1))), polcoeff(t[n/2+1], k) + sum(d=0, n/2-1, binomial(n/2-1, d)*(2^d + if(d%2, 0, binomial(d, d/2)))*polcoeff(t[n/2-d], k-2))/2))/2))}
    { my(t=T(10)); for(n=1, #t, print(t[n])) } \\ Andrew Howroyd, Dec 22 2017

Formula

a(n,m) = Sum_{j=1..p(n,m)}A213939(n,k(n,m,1)+j-1), with k(n,m,1) the position where in the list of partitions of n in A-St order the first with m parts appears, and p(n,m) is the number of partitions of n with m parts shown in the array A008284. E.g., n=5, m=3: k(5,3,1)=4, p(5,3)=2.

A214311 a(n) is the number of representative five-color bracelets (necklaces with turning over allowed) with n beads, for n >= 5.

Original entry on oeis.org

12, 30, 150, 633, 3260, 16212, 66810, 298495, 1410402, 6403842, 31103899, 135342046, 633228696, 2936824916, 13676037486, 65355191817, 298065986582, 1398226666434, 6585151203697, 30958838054304, 148994847644780
Offset: 5

Views

Author

Wolfdieter Lang, Aug 08 2012

Keywords

Comments

This is the fifth column (m=5) of triangle A213940.
The relevant p(n,5)= A008284(n,5) representative color multinomials have exponents (signatures) from the five-part partitions of n, written with nonincreasing parts. E.g., n=7: [3,1,1,1,1] and [2,2,1,1,1] (p(7,5)=2). The corresponding representative bracelets have the five-color multinomials c[1]^3*c[2]*c[3]*c[4]*c[5] and c[1]^2*c[2]^2*c[3]*c[4]*c[5].
Number of n-length bracelets w over a 5-ary alphabet {a1,a2,...,a5} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a5) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226884). The number of 5 color bracelets up to permutations of colors is given by A056360. - Andrew Howroyd, Sep 26 2017

Examples

			a(5) = A213940(5,5) = A213939(5,7) = 12 from the representative bracelets (with colors j for c[j], j=1,...,5) 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235 and 14325, all taken cyclically.
		

Crossrefs

Cf. A213939, A213940, A214309 (m=4 case), A214313 (m=5, all bracelets).

Formula

a(n) = A213940(n,5), n >= 5.
a(n) = sum(A213939(n,k),k= b(n,5)..b(n,6)-1), n>=6, with b(n,m) = A214314(n,m) the position where the first m part partition of n appears in the Abramowitz-Stegun ordering of partitions (see A036036 for the reference and a historical comment). a(5) = A213939(5,b(5,5)) = A213939(5,7) = 12.

A056359 Number of bracelet structures using exactly four different colored beads.

Original entry on oeis.org

0, 0, 0, 1, 2, 11, 33, 137, 478, 1851, 6845, 26148, 98406, 374010, 1416251, 5380907, 20440250, 77795428, 296384565, 1131011633, 4321964768, 16541275068, 63400061153, 243358803904, 935431121462, 3600520831215, 13876485252323, 53546253055179, 206864927506166, 800068244639812
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A152176.

Formula

a(n) = A056354(n) - A056353(n).

Extensions

Terms a(27) and beyond from Andrew Howroyd, Oct 24 2019

A214307 a(n) is the number of representative three-color bracelets (necklaces with turn over allowed) with n beads for n >= 3.

Original entry on oeis.org

1, 2, 6, 20, 40, 106, 304, 731, 1936, 5769, 14343, 39583, 117957, 305576, 855474, 2565922, 6793516, 19242857, 57827068, 155681341, 444461623, 1337436721, 3645877447, 10471728930, 31534868169, 86818242806, 250543852080, 754851821246, 2094887707000
Offset: 3

Views

Author

Wolfdieter Lang, Jul 31 2012

Keywords

Comments

This is the third column (m=3) of triangle A213940.
The relevant p(n,3)= A008284(n,3) representative color multinomials have exponents (signatures) from the 3 part partitions of n, written with nonincreasing parts. E.g., n=6: [4,1,1], [3,2,1] and [2,2,2] (p(6,3)=3). The corresponding representative bracelets have the three-color multinomials c[1]^4*c[2]*c[3], c[1]^3*c[2]^2*c[3] and c[1]^2*c[2]^2*c[3]^2. Therefore, color c[1] is dominant, except for the last case.
Compare this with A027671 where also bracelets with less than three colors are included and not only three-color representatives are counted.
Number of n-length bracelets w over ternary alphabet {a,b,c} such that #(w,a) >= #(w,b) >= #(w,c) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226882). The number of 3 color bracelets up to permutations of colors is given by A056358. - Andrew Howroyd, Sep 26 2017

Examples

			a(5) = A213939(5,4) + A213939(5,5) = 2 + 4 = 6 from the representative bracelets (with colors j for c[j], j=1,2,3) 11123, 11213, 11223, 11232, 12123 and 12213 , all taken cyclically. The first two have color signature (exponents) [3,1,1] and the other four ones have signature [2,2,1].
a(6) = A213939(6,5) + A213939(6,6) + A213939(6,7) = 3 + 6 + 11 = 20. The first three representative bracelets have color signature [4,1,1], the next six have signature [3,2,1] and the remaining 11 ones have signature [2,2,2]. The corresponding representative color multinomials are c[1]^4*c[2]*c[3], c[1]^3*c[2]^2*c[3] and c[1]^2*c[2]^2*c[3]^2.
		

Crossrefs

Cf. A213939, A213940, A214309 (m=4), A214310 (m=3, all bracelets).

Programs

  • PARI
    Cyc(v)={my(g=fold(gcd,v), s=vecsum(v)); sumdiv(g, d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s}
    CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v));  if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))}
    a(n)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [3,3]); t/2} \\ Andrew Howroyd, Sep 26 2017

Formula

a(n) = A213940(n,3), n >= 3.
a(n) = sum(A213939(n,k),k=(2+floor(n/2))..p(n,3)+1+floor(n/2)), n >= 3, with p(n,3) = A008284(n,3) the number of partitions of n with three parts.

Extensions

Terms a(26) and beyond from Andrew Howroyd, Sep 26 2017

A214312 a(n) is the number of all four-color bracelets (necklaces with turning over allowed) with n beads and the four colors are from a repertoire of n distinct colors, for n >= 4.

Original entry on oeis.org

3, 120, 2040, 21420, 183330, 1320480, 8691480, 52727400, 303958710, 1674472800, 8928735816, 46280581620, 234611247780, 1166708558400, 5710351190400, 27565250985360, 131495088522060, 620771489730000, 2903870526350640, 13473567673441260, 62061657617625204, 283995655732351200
Offset: 4

Views

Author

Wolfdieter Lang, Jul 31 2012

Keywords

Comments

This is the fourth column (m=4) of triangle A214306.
Each 4 part partition of n, with the parts written in nonincreasing order, defines a color signature. For a given color signature, say [p[1], p[2], p[3], p[4]], with p[1] >= p[2] >= p[3] >= p[4] >= 1, there are A213941(n,k)= A035206(n,k)*A213939(n,k) bracelets if this signature corresponds (with the order of the parts reversed) to the k-th partition of n in Abramowitz-Stegun (A-St) order. See A213941 for more details. Here all p(n,4)= A008284(n,4) partitions of n with 4 parts are considered. The color repertoire for a bracelet with n beads is [c[1], ..., c[n]].
Compare this with A032275 where also bracelets with less than four colors are included, and the color repertoire is only [c[1], c[2], c[3], c[4]] for all n.

Examples

			a(5) = A213941(5,6) = 120 from the bracelet (with colors j for c[j], j=1, 2, ..., 5) 11234, 11243, 11324, 12134, 13124 and 14123, all six taken cyclically, each representing a class of order A035206(5,6) = 20 (if all 5 colors are used). For example, cyclic(11342) becomes equivalent to cyclic(11243) by turning over or reflection. The multiplicity 20 depends only on the color signature.
		

Crossrefs

Cf. A213941, A214306, A214309 (m=4, representative bracelets), A214313 (m=5).

Programs

  • Mathematica
    t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);
    a56344[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}];
    a[n_] := Binomial[n, 4]*a56344[n, 4];
    Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)

Formula

a(n) = A214306(n,4), n >= 4.
a(n) = sum(A213941(n,k),k = A214314(n,4) .. (A214314(n,4) - 1 + A008284(n,4))), n >= 4.
a(n) = binomial(n,4) * A056344(n). - Andrew Howroyd, Mar 25 2017
Showing 1-5 of 5 results.