cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214315 Floor of the real part of the zeros of the complex Fibonacci function on the right half-plane.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 20, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53, 54, 56, 58, 60, 62, 63, 65, 67, 69, 71, 73, 74, 76, 78, 80, 82, 84, 85, 87, 89, 91, 93, 95, 96, 98, 100, 102, 104, 106, 107, 109, 111, 113, 115, 117, 118
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2012

Keywords

Comments

For the complex Fibonacci function and its complex zeros see the Koshy reference, pp. 523-524. See also the formula for F(z) given in the formula section of A052952. The real parts of the zeros of F are x_0(k) = alpha*k, with alpha = 2*(Pi^2)/(Pi^2 + (2*log(phi))^2), where phi = (1+sqrt(5))/2, and integer k. The corresponding imaginary parts are y_0(k) = - 4*Pi*log(phi)*k/(Pi^2 + (2*log(phi))^2). alpha is approximately 1.828404783. The zeros lie in the lower right and the upper left half-planes, and there is a zero at the origin.
a(n) = floor(alpha*n), n>=0, is a Beatty sequence with the complementary sequence b(n) = floor(beta*n), with beta = alpha/(alpha-1), approximately 2.207139336.
For the floor of the negative imaginary part see A214656.

Examples

			The complementary Beatty sequences start with:
n:    1   2 3  4  5  6   7   8   9  10  11  12  13  14  15  16
a(n): 0   1 3  5  7  9  10  12  14  16  18  20  21  23  25  27
b(n): (0) 2 4  6  8 11  13  15  17  19  22  24  26  28  30  33
		

References

  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.

Crossrefs

Cf. A052952 (Fibonacci related formula), A214656.

Programs

  • Magma
    R:= RealField(100); [Floor(2*n*Pi(R)^2/(Pi(R)^2 + (2*Log((1+Sqrt(5))/2))^2)) : n in [0..100]]; // G. C. Greubel, Mar 09 2024
    
  • Mathematica
    a[n_]:= Floor[2*n*Pi^2/(Pi^2 + 4*Log[GoldenRatio]^2)]; Table[a[n], {n, 0, 65}] (* Jean-François Alcover, Jul 03 2013 *)
  • SageMath
    [floor(2*n*pi^2/(pi^2 +4*(log(golden_ratio))^2)) for n in range(101)] # G. C. Greubel, Mar 09 2024

Formula

a(n) = floor(alpha*n), n>=0, with alpha = x_0(1) given in the comment section.