A214326 Square array read by antidiagonals in which T(n,b) gives the n-th Fibonacci number written in base b with n,b >= 1.
1, 1, 1, 1, 1, 11, 1, 1, 10, 111, 1, 1, 2, 11, 11111, 1, 1, 2, 10, 101, 11111111, 1, 1, 2, 3, 12, 1000, 1111111111111, 1, 1, 2, 3, 11, 22, 1101, 111111111111111111111, 1, 1, 2, 3, 10, 20, 111, 10101, 1111111111111111111111111111111111, 1, 1, 2, 3, 5, 13, 31, 210, 100010
Offset: 1
Examples
Square array A(n,b) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 11, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... 111, 11, 10, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... 11111, 101, 12, 11, 10, 5, 5, 5, 5, 5, 5, 5, ... 11111111, 1000, 22, 20, 13, 12, 11, 10, 8, 8, 8, 8, ... 1111111111111, 1101, 111, 31, 23, 21, 16, 15, 14, 13, 12, 11, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..13
Crossrefs
Programs
-
Maple
A:= proc(n, b) local f, l; f:= combinat[fibonacci](n); if b=1 then parse(cat(1$f)) else l:= NULL; while f>0 do l:= irem(f, b, 'f'), l od; parse(cat(l)) fi end: seq(seq(A(n, 1+d-n), n=1..d), d=1..10);
Comments