A214806
Triangle read by rows: T(n,k) = number of rooted maps with n vertices and k faces on a non-orientable surface of type 2 (0 <= k <= n).
Original entry on oeis.org
0, 0, 488, 0, 11660, 375552, 0, 160680, 6652366, 146387872, 0, 1678880, 86303920, 2298445830, 42795288180, 0, 14771680, 918342738, 28995928200, 629732269188, 10663498973088
Offset: 0
Triangle begins:
0,
0,488,
0,11660,375552,
0,160680,6652366,146387872,
0,1678880,86303920,2298445830,42795288180,
0,14771680,918342738,28995928200,629732269188,10663498973088,
...
A118448
Number of rooted n-edge one-vertex maps on a non-orientable genus-3 surface (dually: one-face maps).
Original entry on oeis.org
41, 690, 7150, 58760, 420182, 2736524, 16661580, 96411060, 536075430, 2886649260, 15139322276, 77665981120, 391031449340, 1937266785080, 9464122525784, 45670084085004, 218002466412870, 1030588793671980
Offset: 3
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.
-
((R-1)^3 (R+1)^2 (11 R^2 - 29 R - 64)/(64 R^8) /. R -> Sqrt[1-4x]) + O[x]^21 // CoefficientList[#, x]& // Drop[#, 3]& (* Jean-François Alcover, Aug 29 2019 *)
A214335
Number of rooted maps with n vertices and 2 faces on a non-orientable surface of type 3/2.
Original entry on oeis.org
0, 690, 16925, 237652, 2518957, 22417804
Offset: 0
A214336
Number of rooted maps with n vertices and 3 faces on a non-orientable surface of type 3/2.
Original entry on oeis.org
0, 7150, 237652, 4306778, 56864524, 613687758
Offset: 0
A214338
Number of rooted maps with n vertices and n faces on a non-orientable surface of type 3/2.
Original entry on oeis.org
0, 41, 16925, 4306778, 910734615, 174833737848
Offset: 0
Showing 1-5 of 5 results.
Comments