cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214361 Expansion of c(q^2) * (c(q) + 2 * c(q^4)) / 9 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 3, 3, 6, 9, 8, 3, 9, 18, 12, 9, 14, 24, 18, 3, 18, 27, 20, 18, 24, 36, 24, 9, 31, 42, 27, 24, 30, 54, 32, 3, 36, 54, 48, 27, 38, 60, 42, 18, 42, 72, 44, 36, 54, 72, 48, 9, 57, 93, 54, 42, 54, 81, 72, 24, 60, 90, 60, 54, 62, 96, 72, 3, 84, 108, 68, 54
Offset: 1

Views

Author

Michael Somos, Jul 18 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
b(n) = 6*a(n) is the number of solutions in integers to n = x^2 + y^2 + z^2 + w^2 where x + y + z is not divisible by 3. - Michael Somos, Jun 23 2018

Examples

			G.f. = q + 3*q^2 + 3*q^3 + 3*q^4 + 6*q^5 + 9*q^6 + 8*q^7 + 3*q^8 + 9*q^9 + 18*q^10 + ...
a(1) = 1, b(1) = 6 with solutions (w, x, y, z) = {(0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)} and their negatives. - _Michael Somos_, Jun 23 2018
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 - EllipticTheta[ 3, 0, q^3]^4) / 8, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q, q^2] QPochhammer[ -q^3, q^6])^3 EllipticTheta[ 2, 0, (-q)^(3/2)]^4 / (-16 (-q)^(1/2)), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^3 + A) * eta(x^6 + A)^2 * eta(x^12 + A) / ( eta(x + A) * eta(x^4 + A))^3, n))};
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n) + if( n%3==0, -1 * sigma(n/3)) + if( n%4==0, -4 * sigma(n/4)) + if( n%12==0, +4 * sigma(n/12)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 3, p==3, 3^e, (p^(e+1) - 1) / (p - 1))))};

Formula

Expansion of (phi(q)^4 - phi(q^3)^4) / 8 = q * phi(q^3) * (chi(q) * psi(-q^3))^3 = q * psi(-q^3)^4 * (chi(q) * chi(q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of eta(q^2)^6 * eta(q^3) * eta(q^6)^2 * eta(q^12) / ( eta(q) * eta(q^4))^3 in powers of q.
Euler transform of period 12 sequence [3, -3, 2, 0, 3, -6, 3, 0, 2, -3, 3, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 4 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A214456.
a(n) is multiplicative with a(2^e) = 3 if e>0, a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f.: x * Product_{k>0} (1 + (-x)^(3*k)) * (1 - x^(6*k))^4 / ( 1 + (-x)^k)^3.
a(n) = -(-1)^n * A124449(n). a(3*n) = 3*a(n). a(2*n) = a(4*n) = 3 * A121443(n). a(2*n + 1) = A185717(n).
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^(2*s-2)) * (1 - 1/3^s) * zeta(s-1) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). (End)