A214402 Cancellation factor in reducing Sum_{k=0...n} n^k/k! to lowest terms.
1, 2, 6, 8, 10, 144, 70, 128, 162, 6400, 22, 6220800, 26, 100352, 182250, 425984, 170, 429981696, 38, 163840000, 13502538, 317194240, 46, 247669456896, 31250, 1417674752, 15943230, 80564191232, 9802, 25076532510720000000, 62, 10737418240, 38196790434, 1241245548544
Offset: 1
Keywords
Links
- Michel Marcus, Table of n, a(n) for n = 1..300
- Eric Weisstein, Exponential Sum Function.
Programs
-
Mathematica
Table[n!/Denominator[Sum[n^k/k!, {k, 0, n}]], {n, 1, 30}]
-
PARI
a(n) = n!/denominator(sum(k=0, n, n^k/k!)); \\ Michel Marcus, Apr 20 2021
Formula
a(n) = n!/A214401(n).
Extensions
More terms from Michel Marcus, Apr 20 2021