A214403 Triangle, read by rows of terms T(n,k) for k=0..n^2, that starts with a '1' in row 0 with row n>0 consisting of 2*n-1 '1's followed by the partial sums of the prior row.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 36, 47, 62, 83, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 55, 68, 85, 107, 135, 171, 218, 280, 363
Offset: 0
Examples
Triangle begins: [1]; [1, 1]; [1,1,1, 1, 2]; [1,1,1,1,1, 1,2,3, 4, 6]; [1,1,1,1,1,1,1, 1,2,3,4,5, 6,8,11, 15, 21]; [1,1,1,1,1,1,1,1,1, 1,2,3,4,5,6,7, 8,10,13,17,22, 28,36,47, 62, 83]; ... Row sums equal the row sums (A178325) of triangle A214398, where A214398(n, k) = binomial(k^2+n-k-1, n-k): 1; 1, 1; 1, 4, 1; 1, 10, 9, 1; 1, 20, 45, 16, 1; 1, 35, 165, 136, 25, 1; 1, 56, 495, 816, 325, 36, 1; 1, 84, 1287, 3876, 2925, 666, 49, 1; ...
Links
- Paul D. Hanna, Rows n = 0..14, flattened.
Programs
-
PARI
{T(n, k)=if(k>n^2||n<0||k<0, 0, if(n==0,1,if(k<=2*n-1, 1, sum(i=0, k-2*n+1, T(n-1, i)))))} for(n=0,10,for(k=0,n^2,print1(T(n,k),", "));print(""))
Comments