cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214434 Composite numbers k such that k divides Fibonacci(k+1) or Fibonacci(k-1) and 2^(k-1) == 1 (mod k).

Original entry on oeis.org

6601, 13981, 30889, 68101, 219781, 252601, 332949, 399001, 512461, 642001, 721801, 722261, 741751, 852841, 873181, 1024651, 1141141, 1193221, 1207361, 1533601, 1690501, 1735841, 1857241, 1909001, 2085301, 2100901, 2165801, 2603381, 2704801, 2757241, 3186821, 3568661
Offset: 1

Views

Author

Gary Detlefs, Jul 17 2012

Keywords

Comments

Pseudoprimes to a criterion for primality which tests that
1. k divides Fibonacci(k+1) or Fibonacci(k-1) (see A182554, A081264), and
2. 2^(k-1) == 1 (mod k) (see A001567).
All terms appear to be congruent to 1 or -1 (mod 5).
Terms that are not congruent to 1 or -1 (mod 5): 22711873, 40160737, 55462177, ... . - Amiram Eldar, Sep 12 2022

Examples

			6601 is in the sequence because the 6600th Fibonacci number is divisible by 6601 and 2^6600 = 1 mod 6601.
		

Crossrefs

Programs

  • Maple
    with(combinat):f:= n-> fibonacci(n): for n from 1 to 2000000 do if(f(n+1) mod n = 0 or f(n-1) mod n = 0) and 2^(n-1) mod n = 1 and not isprime(n) then print(n) fi od;
  • Mathematica
    Select[Range[1, 4*10^6, 2], CompositeQ[#] && PowerMod[2, # - 1, #] == 1 && (Divisible[Fibonacci[# - 1], #] || Divisible[Fibonacci[# + 1], #]) &] (* Amiram Eldar, Sep 12 2022 *)

Formula

Intersection of A182554 and A001567.