A214434 Composite numbers k such that k divides Fibonacci(k+1) or Fibonacci(k-1) and 2^(k-1) == 1 (mod k).
6601, 13981, 30889, 68101, 219781, 252601, 332949, 399001, 512461, 642001, 721801, 722261, 741751, 852841, 873181, 1024651, 1141141, 1193221, 1207361, 1533601, 1690501, 1735841, 1857241, 1909001, 2085301, 2100901, 2165801, 2603381, 2704801, 2757241, 3186821, 3568661
Offset: 1
Keywords
Examples
6601 is in the sequence because the 6600th Fibonacci number is divisible by 6601 and 2^6600 = 1 mod 6601.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..671 from Giovanni Resta)
Programs
-
Maple
with(combinat):f:= n-> fibonacci(n): for n from 1 to 2000000 do if(f(n+1) mod n = 0 or f(n-1) mod n = 0) and 2^(n-1) mod n = 1 and not isprime(n) then print(n) fi od;
-
Mathematica
Select[Range[1, 4*10^6, 2], CompositeQ[#] && PowerMod[2, # - 1, #] == 1 && (Divisible[Fibonacci[# - 1], #] || Divisible[Fibonacci[# + 1], #]) &] (* Amiram Eldar, Sep 12 2022 *)
Comments