A214437 Least numbers whose groups of 2,3,...,n digits taken from the left are divisible by 2,3,...,n.
1, 10, 102, 1020, 10200, 102000, 1020005, 10200056, 102000564, 1020005640, 10200056405, 102006162060, 1020061620604, 10200616206046, 102006162060465, 1020061620604656, 10200616206046568, 108054801036000018, 1080548010360000180, 10805480103600001800
Offset: 1
Examples
a(6) = 102000 because 10, 102, 1020, 10200 and 102000 are divisible by 2, 3, 4, 5 and 6. There are nine one-digit numbers that are divisible by 1; the smallest is 1, so a(1)=1. For two-digit numbers, the second digit must be even, i.e., 0,2,4,6,8 to make it divisible by 2, which gives 10 as the smallest number to satisfy the requirement, so a(2)=10. - _Shyam Sunder Gupta_, Aug 04 2013
Links
- Shyam Sunder Gupta, Table of n, a(n) for n = 1..25
- Shyam Sunder Gupta, On Some Special Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 22, 527-565.
Programs
-
Mathematica
a=Table[j, {j, 9}]; r=2; t={}; While[!a == {}, n=Length[a]; nmin=Last[a]; k=1; b={}; While[!k>n, z0=a[[k]]; Do[z=10*z0+j; If[Mod[z, r]==0, b=Append[b, z]], {j, 0, 9}]; k++]; AppendTo[t, nmin]; a=b; r++]; t (* Shyam Sunder Gupta, Aug 04 2013 *)
Comments