cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214445 a(n) = Euler(2*n)*binomial(4*n,2*n).

Original entry on oeis.org

1, -6, 350, -56364, 17824950, -9334057876, 7308698191340, -7997684730384600, 11655857682806336550, -21824608434847162167300, 51054382673481634917970500, -145916894745749901373155951720, 500306549034304293474784779805500, -2026855002861172152744641068895033544
Offset: 0

Views

Author

Peter Luschny, Jul 18 2012

Keywords

Comments

Central column of the nonzero coefficients of the Swiss-Knife polynomials, a(n) = A153641(4*n, 2*n).

Crossrefs

Programs

  • Sage
    def A214445(n) : return binomial(4*n,2*n)*euler_number(2*n)

Formula

a(n) = (-1)^n * A086646(2n,n). - Alois P. Heinz, Apr 27 2023