A214459 Number of n X 3 nonconsecutive chess tableaux.
1, 0, 0, 1, 1, 7, 27, 128, 640, 3351, 18313, 103404, 600538, 3571717, 21683185, 134005373, 841259885, 5355078350, 34512405410, 224908338137, 1480420941781, 9833512593113, 65860442383487, 444453988418791, 3020274890688447, 20656019108074552, 142107550142684602
Offset: 0
Keywords
Examples
a(5) = 7: [1 6 11] [1 4 11] [1 6 9] [1 4 9] [1 4 7] [1 4 7] [1 4 7] [2 7 12] [2 5 12] [2 7 10] [2 5 10] [2 5 10] [2 5 10] [2 5 8] [3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 6 13] [3 10 13] [4 9 14] [6 9 14] [4 11 14] [6 11 14] [6 11 14] [8 11 14] [6 11 14] [5 10 15] [7 10 15] [5 12 15] [7 12 15] [9 12 15] [9 12 15] [9 12 15].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200 (terms 0..70 from Alois P. Heinz)
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
Crossrefs
Column k=3 of A214088.
Programs
-
Maple
b:= proc(l, t) option remember; local n, s; n, s:= nops(l), add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and irem(s+i-l[i], 2)=1 and l[i]> `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n)) end: a:= n-> b([3$n], 0): seq(a(n), n=0..25);
-
Mathematica
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, {i -> l[[i]] - 1}], i], 0], {i, 1, n}]]]; a[n_] := If[n < 1, 1, b[Array[3&, n], 0]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 13 2017, after Alois P. Heinz *)
Formula
a(n) ~ c * 8^n / n^4, where c = 0.250879571... - Vaclav Kotesovec, Sep 06 2017
Comments