A214493 Numbers of the form ((6k+5)^2+9)/2 or 2(3k+4)^2-9.
17, 23, 65, 89, 149, 191, 269, 329, 425, 503, 617, 713, 845, 959, 1109, 1241, 1409, 1559, 1745, 1913, 2117, 2303, 2525, 2729, 2969, 3191, 3449, 3689, 3965, 4223, 4517, 4793, 5105, 5399, 5729, 6041, 6389, 6719, 7085, 7433, 7817, 8183, 8585, 8969, 9389, 9791, 10229, 10649, 11105, 11543, 12017, 12473, 12965, 13439, 13949
Offset: 0
Examples
For n = 7, a(7)=2*a(6)-2*a(4)+a(3)=2*269-2*149+89=329.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
I:=[17, 23, 65, 89]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..75]];
-
Mathematica
LinearRecurrence[{2,0,-2,1},{17,23,65,89},60] (* Harvey P. Dale, Aug 07 2015 *)
Formula
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: (17-11*x+19*x^2-7*x^3)/((1+x)*(1-x)^3).
a(n) = (6*n*(3*n+10)+27*(-1)^n+41)/4.
2*a(2n)^2 = a(2n-1)^2 + a(2n+1)^2.
Comments