A214512 Least number having n orderless representations as p^2 + q^2 + r^2, where p, q, and r are primes.
12, 219, 363, 699, 1179, 2019, 2259, 3891, 4059, 6459, 5379, 10899, 13179, 10659, 12579, 21819, 20979, 26859, 34419, 38379, 41019, 61299, 39459, 41811, 82131, 50379, 77451, 71379, 141099, 85491, 103971, 74571, 180411, 108339, 179739, 161139, 126819, 225099
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
nn = 10^6; ps = Prime[Range[PrimePi[Sqrt[nn]]]]; t = Flatten[Table[ps[[i]]^2 + ps[[j]]^2 + ps[[k]]^2, {i, Length[ps]}, {j, i, Length[ps]}, {k, j, Length[ps]}]]; t = Select[t, # <= nn &]; t2 = Sort[Tally[t]]; u = Union[Transpose[t2][[2]]]; d = Complement[Range[u[[-1]]], u]; If[d == {}, nLim = u[[-1]], nLim = d[[1]]-1]; t3 = Table[Select[t2, #[[2]] == n &, 1][[1]], {n, nLim}]; Transpose[t3][[1]]