A214514 Numbers of the form p^2 + q^2 + r^2, where p, q, and r are primes.
12, 17, 22, 27, 33, 38, 43, 54, 57, 59, 62, 67, 75, 78, 83, 99, 102, 107, 123, 129, 134, 139, 147, 150, 155, 171, 174, 177, 179, 182, 187, 195, 198, 203, 219, 222, 227, 243, 246, 251, 267, 291, 294, 297, 299, 302, 307, 315, 318, 323, 339, 342, 347, 363, 369
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 10^3; ps = Prime[Range[PrimePi[Sqrt[nn]]]]; t = Flatten[Table[ps[[i]]^2 + ps[[j]]^2 + ps[[k]]^2, {i, Length[ps]}, {j, i, Length[ps]}, {k, j, Length[ps]}]]; t = Select[t, # <= nn &]; Union[t]
-
Python
from sympy import primerange as primes from itertools import takewhile, combinations_with_replacement as mc def aupto(N): psqs = list(takewhile(lambda x: x<=N, (p**2 for p in primes(1, N+1)))) sum3 = set(sum(c) for c in mc(psqs, 3) if sum(c) <= N) return sorted(sum3) print(aupto(369)) # Michael S. Branicky, Dec 17 2021
Comments