A214528 a(n) = least k>0 such that n! divides Fibonacci(k).
1, 1, 3, 12, 12, 60, 60, 120, 480, 4320, 43200, 43200, 518400, 3628800, 7257600, 108864000, 1741824000, 1741824000, 31352832000, 31352832000, 627056640000, 13168189440000, 289700167680000, 289700167680000, 6952804024320000, 173820100608000000, 4519322615808000000, 122021710626816000000
Offset: 0
Keywords
Examples
Least k such that 2! divides Fibonacci(k) is 3: Fibonacci(3)=2, so a(2)=3. Least k such that 3! divides Fibonacci(k) is 12: Fibonacci(12)=144, so a(3)=12.
Links
- Max Alekseyev, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Python
n = f = c = d = 1 # f = (n-1)! fc1 = fd1 = 0 # Fib[c-1], Fib[d-1] fc = fd = 1 # Fib[c], Fib[d] while 1: if fc % f: if c==d: fd, fd1 = fc, fc1 t = fc*fc fc, fc1 = (2*fc*fc1+t), (fc1*fc1+t) else: fc, fc1 = (fc*(fd1+fd) + fc1*fd), (fc*fd + fc1*fd1) c += d #print('.', end=', ') else: print(c, end=', ') d = c f *= n n += 1
Formula
a(n) = A001177(n!)
Extensions
Terms a(17) onward from Max Alekseyev, Jan 30 2014
Comments