A214601 Irregular array T(n,k) of the numbers of non-extendable (complete) non-self-adjacent simple paths incorporating each of a minimal subset of nodes within a square lattice bounded by rectangles with nodal dimensions n and 6, n >= 2.
68, 70, 70, 418, 472, 479, 470, 524, 452, 2401, 3013, 3312, 3043, 2844, 2375, 13344, 18302, 21307, 18726, 17364, 15275, 21050, 15896, 11148, 68230, 98032, 117197, 98032, 95942, 89083, 117197, 89083, 64506, 335569, 494659, 599448, 482769, 488710, 463257, 577787, 465142, 353704, 600124, 458850, 341918
Offset: 2
Examples
When n = 2, the number of times (NT) each node in the rectangle (N) occurs in a complete non-self-adjacent simple path is N 0 1 2 3 4 5 6 7 8 9 10 11 NT 68 70 70 70 70 68 68 70 70 70 70 68 To limit duplication, only the top left-hand corner 68 and the two 70's to its right are stored in the sequence, i.e. T(2,1) = 68, T(2,2) = 70 and T(2,3) = 70.
Links
- C. H. Gribble, Computed characteristics of complete non-self-adjacent paths in a square lattice bounded by various sizes of rectangle.
- C. H. Gribble, Computes characteristics of complete non-self-adjacent paths in square and cubic lattices bounded by various sizes of rectangle and rectangular cuboid respectively.
Comments