A214564 Number T(n,k) of totally symmetric plane partitions with largest part <= n and exactly k orbits under action of the symmetric group S_3; triangle T(n,k), n>=0, 0<=k<=A000292(n), read by rows.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 5, 5, 5, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20, 20, 20, 20, 19, 18, 17, 15, 13, 12, 10, 8, 7, 5, 4, 3, 2, 1, 1, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 1, 1, 1, 1; 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1; 1, 1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 5, 5, 5, 4, 3, 3, 2, 1, 1, 1; 1, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20, 20, 20, 20, 19, ... ...
Links
- Alois P. Heinz, Rows n = 0..21
- C. Koutschan, M. Kauers, and D. Zeilberger, Proof of George Andrews’s and David Robbins’s q-TSPP conjecture, PNAS (2011), 108: 2196-2199.
- R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
Programs
-
Maple
gf:= n-> simplify(mul(mul(mul( (1-q^(i+j+k-1))/ (1-q^(i+j+k-2)), i=1..j), j=1..k), k=1..n)): T:= n-> seq(coeff(gf(n), q, k), k=0..n*(n+1)*(n+2)/6): seq(T(n), n=0..7);
Formula
G.f. of row n: Product_{1<=i<=j<=k<=n} (1-q^(i+j+k-1))/(1-q^(i+j+k-2)).