A214567 Maximal number of distinct rooted trees obtained from the rooted tree with Matula-Goebel number n by adding one pendant edge at one of its vertices.
1, 2, 3, 2, 4, 4, 3, 2, 3, 5, 5, 4, 5, 4, 6, 2, 4, 4, 3, 5, 5, 6, 4, 4, 4, 6, 3, 4, 6, 7, 6, 2, 7, 5, 6, 4, 5, 4, 7, 5, 6, 6, 5, 6, 6, 5, 7, 4, 3, 5, 6, 6, 3, 4, 8, 4, 5, 7, 5, 7, 5, 7, 5, 2, 8, 8, 4, 5, 6, 7, 6, 4, 6, 6, 6, 4, 7, 8, 7, 5, 3
Offset: 1
Keywords
Examples
a(4)=2 because the rooted tree with Matula-Goebel number 4 is V; adding an edge at either of the two leaves yields the same rooted tree. a(5)=4 because the rooted tree with Matula-Goebel number 5 is the path on 4 vertices; adding one edge at any of the vertices yields a new rooted tree. a(987654321)=18 (reader may verify this on Fig. 2 of the Deutsch paper).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Haskell
import Data.List (genericIndex) a214567 n = genericIndex a214567_list (n - 1) a214567_list = 1 : g 2 where g x = y : g (x + 1) where y | t > 0 = a214567 t + 1 | otherwise = 1 + sum (map ((subtract 1) . a214567) $ a027748_row x) where t = a049084 x -- Reinhard Zumkeller, Sep 03 2013
-
Maple
with(numtheory): a := proc (n) local FS: FS := proc (n) options operator, arrow: factorset(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+a(pi(n)) else 1+add(a(FS(n)[j])-1, j = 1 .. nops(FS(n))) end if end proc: seq(a(n), n = 1 .. 130);
-
Mathematica
a[n_] := Which[n == 1, 1, PrimeQ[n], 1 + a[PrimePi[n]], True, 1 + Total[a[#] - 1& /@ FactorInteger[n][[All, 1]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 25 2024 *)
-
PARI
a(n) = 1 + vecsum([self()(primepi(p)) |p<-factor(n)[,1]]); \\ Kevin Ryde, Oct 19 2022
Formula
a(1)=1; if n is t-th prime, then a(n)=1+a(t); if n is composite, then a(n) = 1+Sum_{p|n}(a(p)-1), where summation is over the distinct prime divisors of n.
Comments