A214622 Triangle read by rows, matrix inverse of [x^(n-k)](skp(n,x)-skp(n,x-1)+x^n) where skp denotes the Swiss-Knife polynomials A153641.
1, -1, 1, 3, -2, 1, -10, 9, -3, 1, 45, -40, 18, -4, 1, -256, 225, -100, 30, -5, 1, 1743, -1536, 675, -200, 45, -6, 1, -13840, 12201, -5376, 1575, -350, 63, -7, 1, 125625, -110720, 48804, -14336, 3150, -560, 84, -8, 1, -1282816, 1130625, -498240, 146412, -32256, 5670, -840, 108, -9, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 3, -2, 1; -10, 9, -3, 1; 45, -40, 18, -4, 1; -256, 225, -100, 30, -5, 1; 1743, -1536, 675, -200, 45, -6, 1; ...
Programs
-
Maple
A214622_row := proc(n) local s,t,k; s := series(exp(z*x)/(sech(x)+tanh(x)),x,n+2); t := factorial(n)*coeff(s,x,n); seq(coeff(t,z,k), k=(0..n)) end: for n from 0 to 7 do A214622_row(n) od; # Peter Luschny, Aug 01 2012
-
Mathematica
A214622row[n_] := Module[{s, t}, s = Series[Exp[z*x]/(Sech[x] + Tanh[x]), {x, 0, n+2}]; t = n!*Coefficient[s, x, n]; Table[Coefficient[t, z, k], {k, 0, n}]]; Table[A214622row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, May 25 2024, after Peter Luschny *)
-
Sage
R = PolynomialRing(ZZ, 'x') @CachedFunction def skp(n, x) : # Swiss-Knife polynomials A153641. if n == 0 : return 1 return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2]) def A109449_signed(n, k) : return 0 if k > n else R(skp(n, x)-skp(n, x-1)+x^n)[k] T = matrix(ZZ, 9, A109449_signed).inverse(); T
Formula
T(n,k) = matrix inverse of A109449(n,k)*(-1)^floor((k-n+5)/2).
T(n,0) = A003704(n+1).
E.g.f.: exp(x*z)/(sech(x)+tanh(x)). - Peter Luschny, Aug 01 2012