cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214650 Number of distinct connected unicyclic bipartite graphs with n vertices.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 10, 34, 85, 254, 690, 1997, 5582, 15975, 45244, 129254, 368215, 1052961, 3010169, 8622273, 24709964, 70902886, 203594559, 585163116, 1683079071, 4844758076, 13955265122, 40225474849, 116021495035, 334843170810, 966929417619, 2793756318793
Offset: 1

Views

Author

David Bevan, Jul 24 2012

Keywords

Comments

The graphs also have n edges.

Examples

			a(5)=1, a 4-cycle plus a pendant edge.
		

Crossrefs

Cf. A001429.

Programs

  • PARI
    \\ TreeGf gives gf of A000081
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={concat([0,0,0], if(n<4, [], my(t=TreeGf(n-2)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(sum(k=2, n\2, sumdiv(2*k, d, eulerphi(d)*g(d)^(2*k/d))/k + (g(1)^2+g(2))*g(2)^(k-1))/4)))} \\ Andrew Howroyd, May 22 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, May 22 2018