A214315 Floor of the real part of the zeros of the complex Fibonacci function on the right half-plane.
0, 1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 20, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53, 54, 56, 58, 60, 62, 63, 65, 67, 69, 71, 73, 74, 76, 78, 80, 82, 84, 85, 87, 89, 91, 93, 95, 96, 98, 100, 102, 104, 106, 107, 109, 111, 113, 115, 117, 118
Offset: 0
Keywords
Examples
The complementary Beatty sequences start with: n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a(n): 0 1 3 5 7 9 10 12 14 16 18 20 21 23 25 27 b(n): (0) 2 4 6 8 11 13 15 17 19 22 24 26 28 30 33
References
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Magma
R:= RealField(100); [Floor(2*n*Pi(R)^2/(Pi(R)^2 + (2*Log((1+Sqrt(5))/2))^2)) : n in [0..100]]; // G. C. Greubel, Mar 09 2024
-
Mathematica
a[n_]:= Floor[2*n*Pi^2/(Pi^2 + 4*Log[GoldenRatio]^2)]; Table[a[n], {n, 0, 65}] (* Jean-François Alcover, Jul 03 2013 *)
-
SageMath
[floor(2*n*pi^2/(pi^2 +4*(log(golden_ratio))^2)) for n in range(101)] # G. C. Greubel, Mar 09 2024
Formula
a(n) = floor(alpha*n), n>=0, with alpha = x_0(1) given in the comment section.
Comments