cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214671 Floor of the real parts of the zeros of the complex Lucas function on the right half-plane.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 11, 13, 15, 17, 19, 21, 22, 24, 26, 28, 30, 31, 33, 35, 37, 39, 41, 42, 44, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 75, 77, 79, 81, 83, 85, 86, 88, 90, 92, 94, 95, 97, 99, 101, 103, 105, 106, 108, 110, 112, 114, 116, 117, 119
Offset: 0

Views

Author

Wolfdieter Lang, Jul 25 2012

Keywords

Comments

For the complex Lucas function and its zeros see the Koshy reference.
This function is L: C -> C, z -> L(z), with L(z) = exp(log(phi)*z) + exp(i*Pi*z)*exp(-log(phi)*z), with the complex unit i and the golden section phi = (1+sqrt(5))/2. The complex zeros are z_0(k) = x_0(k) + y_0(k)*i, with x_0(k) = (k+1/2)*alpha and y_0(k) = (k+1/2)*b, where alpha and b appear in the Fibonacci case as alpha = 2*(Pi^2)/(Pi^2 + (2*log(phi))^2) and b = 4*Pi*log(phi)/(Pi^2 + (2*log(phi))^2). The x_0 and y_0 values are shifted compared to the zeros of the Fibonacci case by alpha/2 = 0.9142023918..., respectively b/2 = 0.2800649542....

References

  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.

Crossrefs

Cf. A214315 (Fibonacci case), A214672 (floor of imaginary parts), A214673 (moduli).

Programs

  • Magma
    R:= RealField(100); [Floor((2*n+1)*Pi(R)^2/(Pi(R)^2 + (2*Log((1+Sqrt(5))/2))^2)) : n in [0..100]]; // G. C. Greubel, Mar 09 2024
    
  • Mathematica
    Table[Floor[(2*n+1)*(Pi^2)/(Pi^2+(2*Log[GoldenRatio])^2)], {n,0,100}] (* G. C. Greubel, Mar 09 2024 *)
  • SageMath
    [floor((2*n+1)*pi^2/(pi^2 +4*(log(golden_ratio))^2)) for n in range(101)] # G. C. Greubel, Mar 09 2024

Formula

a(n) = floor((n+1/2)*alpha), with alpha/2 = x_0(0) = Pi^2/(Pi^2 + (2*log(phi))^2).