A214671 Floor of the real parts of the zeros of the complex Lucas function on the right half-plane.
0, 2, 4, 6, 8, 10, 11, 13, 15, 17, 19, 21, 22, 24, 26, 28, 30, 31, 33, 35, 37, 39, 41, 42, 44, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 75, 77, 79, 81, 83, 85, 86, 88, 90, 92, 94, 95, 97, 99, 101, 103, 105, 106, 108, 110, 112, 114, 116, 117, 119
Offset: 0
Keywords
References
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Magma
R:= RealField(100); [Floor((2*n+1)*Pi(R)^2/(Pi(R)^2 + (2*Log((1+Sqrt(5))/2))^2)) : n in [0..100]]; // G. C. Greubel, Mar 09 2024
-
Mathematica
Table[Floor[(2*n+1)*(Pi^2)/(Pi^2+(2*Log[GoldenRatio])^2)], {n,0,100}] (* G. C. Greubel, Mar 09 2024 *)
-
SageMath
[floor((2*n+1)*pi^2/(pi^2 +4*(log(golden_ratio))^2)) for n in range(101)] # G. C. Greubel, Mar 09 2024
Formula
a(n) = floor((n+1/2)*alpha), with alpha/2 = x_0(0) = Pi^2/(Pi^2 + (2*log(phi))^2).
Comments