A214676 A(n,k) is n represented in bijective base-k numeration; square array A(n,k), n>=1, k>=1, read by antidiagonals.
1, 1, 11, 1, 2, 111, 1, 2, 11, 1111, 1, 2, 3, 12, 11111, 1, 2, 3, 11, 21, 111111, 1, 2, 3, 4, 12, 22, 1111111, 1, 2, 3, 4, 11, 13, 111, 11111111, 1, 2, 3, 4, 5, 12, 21, 112, 111111111, 1, 2, 3, 4, 5, 11, 13, 22, 121, 1111111111
Offset: 1
Examples
Square array A(n,k) begins: : 1, 1, 1, 1, 1, 1, 1, 1, ... : 11, 2, 2, 2, 2, 2, 2, 2, ... : 111, 11, 3, 3, 3, 3, 3, 3, ... : 1111, 12, 11, 4, 4, 4, 4, 4, ... : 11111, 21, 12, 11, 5, 5, 5, 5, ... : 111111, 22, 13, 12, 11, 6, 6, 6, ... : 1111111, 111, 21, 13, 12, 11, 7, 7, ... : 11111111, 112, 22, 14, 13, 12, 11, 8, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..18, flattened
- R. R. Forslund, A logical alternative to the existing positional number system, Southwest Journal of Pure and Applied Mathematics, Vol. 1, 1995, 27-29.
- Eric Weisstein's World of Mathematics, Zerofree
- Wikipedia, Bijective numeration
Crossrefs
Programs
-
Maple
A:= proc(n, b) local d, l, m; m:= n; l:= NULL; while m>0 do d:= irem(m, b, 'm'); if d=0 then d:=b; m:=m-1 fi; l:= d, l od; parse(cat(l)) end: seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
-
Mathematica
A[n_, b_] := Module[{d, l, m}, m = n; l = Nothing; While[m > 0, {m, d} = QuotientRemainder[m, b]; If[d == 0, d = b; m--]; l = {d, l}]; FromDigits @ Flatten @ l]; Table[A[n, d-n+1], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)
Comments