cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214676 A(n,k) is n represented in bijective base-k numeration; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 11, 1, 2, 111, 1, 2, 11, 1111, 1, 2, 3, 12, 11111, 1, 2, 3, 11, 21, 111111, 1, 2, 3, 4, 12, 22, 1111111, 1, 2, 3, 4, 11, 13, 111, 11111111, 1, 2, 3, 4, 5, 12, 21, 112, 111111111, 1, 2, 3, 4, 5, 11, 13, 22, 121, 1111111111
Offset: 1

Views

Author

Alois P. Heinz, Jul 25 2012

Keywords

Comments

The digit set for bijective base-k numeration is {1, 2, ..., k}.

Examples

			Square array A(n,k) begins:
:         1,   1,  1,  1,  1,  1,  1,  1, ...
:        11,   2,  2,  2,  2,  2,  2,  2, ...
:       111,  11,  3,  3,  3,  3,  3,  3, ...
:      1111,  12, 11,  4,  4,  4,  4,  4, ...
:     11111,  21, 12, 11,  5,  5,  5,  5, ...
:    111111,  22, 13, 12, 11,  6,  6,  6, ...
:   1111111, 111, 21, 13, 12, 11,  7,  7, ...
:  11111111, 112, 22, 14, 13, 12, 11,  8, ...
		

Crossrefs

A(n+1,n) gives A010850.

Programs

  • Maple
    A:= proc(n, b) local d, l, m; m:= n; l:= NULL;
          while m>0 do  d:= irem(m, b, 'm');
            if d=0 then d:=b; m:=m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    A[n_, b_] := Module[{d, l, m}, m = n; l = Nothing; While[m > 0, {m, d} = QuotientRemainder[m, b]; If[d == 0, d = b; m--]; l = {d, l}]; FromDigits @ Flatten @ l];
    Table[A[n, d-n+1], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)