A214687 E.g.f.: Sum_{n>=0} exp(2*n*x) * Product_{k=1..n} (exp((2*k-1)*x) - 1).
1, 1, 11, 217, 7691, 430921, 35117531, 3927676537, 577640740331, 108115035641641, 25097054302205051, 7076531411753120857, 2382432541064412524171, 943997056642739165681161, 434864796716131476530668571, 230460477665217932140097413177
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 11*x^2/2! + 217*x^3/3! + 7691*x^4/4! + 430921*x^5/5! +... such that, by definition, A(x) = 1 + exp(2*x)*(exp(x)-1) + exp(4*x)*(exp(x)-1)*(exp(3*x)-1) + exp(6*x)*(exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1) + exp(8*x)*(exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1) +... Compare this series to the identity: exp(-x) = 1 - exp(2*x)*(exp(x)-1) + exp(4*x)*(exp(x)-1)*(exp(3*x)-1) - exp(6*x)*(exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1) + exp(8*x)*(exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1) +-... The related e.g.f. of A215066 equals the series: G(x) = 1 + (exp(x)-1) + (exp(x)-1)*(exp(3*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1) +... or, more explicitly, G(x) = 1 + x + 7*x^2/2! + 127*x^3/3! + 4315*x^4/4! + 235831*x^5/5! +... such that G(x) satisfies: G(x) = (1 + exp(x)*A(x))/2.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..175
- Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
Programs
-
PARI
{a(n)=n!*polcoeff(sum(m=0,n+1,exp(2*m*x+x*O(x^n))*prod(k=1,m,exp((2*k-1)*x+x*O(x^n))-1)),n)} for(n=0,26,print1(a(n),", "))
Formula
E.g.f. A(x) satisfies: A(x) = exp(-x)*(2*G(x) - 1),
where G(x) = Sum_{n>=0} Product_{k=1..n} (exp((2*k-1)*x) - 1) = e.g.f. of A215066.
a(n) ~ 2*sqrt(6) * 24^n * (n!)^2 / (sqrt(n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, May 05 2014
Comments