A214697 Least k > 1 such that tri(n)+ ... + tri(n+k-1) is a triangular number.
2, 3, 5, 17, 7, 2, 89, 125, 3, 215, 269, 13, 10, 8, 11, 27, 719, 815, 21, 57, 316, 11, 26, 1517, 17, 1799, 30, 26, 7, 5, 2609, 11, 2975, 10, 2, 76, 3779, 1251, 208, 4445, 115, 4919, 1045, 5417, 11, 17, 1205, 6485, 38, 2860, 7349, 18, 25, 8267, 8585, 8909
Offset: 0
Examples
0+1 = 1 is a triangular number, two summands, so a(0)=2. 1+3+6 = 10 is a triangular number, three summands, so a(1)=3. 3+6+10+15+21 = 55 is a triangular number, five summands, so a(2)=5. Starting from Triangular(5)=15: 15+21=36 is a triangular number, two summands, so a(5)=2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..5000
Programs
-
Maple
f:= proc(n) local k; for k from 2 do if issqr(12*k^3+36*k^2*n+36*k*n^2-12*k+9) then return k fi od end proc: map(f, [$0..100]); # Robert Israel, Mar 03 2016
-
Mathematica
triQ[n_] := IntegerQ[Sqrt[1+8*n]]; Table[k = n+1; s = k^2; While[! triQ[s], k++; s = s + k*(k+1)/2]; k - n + 1, {n, 0, 55}] (* T. D. Noe, Jul 26 2012 *)
-
Python
for n in range(77): i = ti = n sum = 0 tn_gte_sum = 0 # least oblong number >= sum while i-n<=1 or tn_gte_sum!=sum: sum += i*(i+1) i+=1 while tn_gte_sum
-
Python
from math import sqrt def A214697(n): k, a1, a2, m = 2, 36*n, 36*n**2 - 12, n*(72*n + 144) + 81 while int(round(sqrt(m)))**2 != m: k += 1 m = k*(k*(12*k + a1) + a2) + 9 return k # Chai Wah Wu, Mar 01 2016
Comments