A214728 Least k such that n + (n+1) + ... + (n+k-1) is a square.
1, 1, 3, 5, 1, 9, 11, 13, 15, 1, 19, 3, 2, 25, 27, 29, 1, 33, 5, 37, 39, 8, 43, 45, 2, 1, 3, 53, 55, 57, 59, 61, 9, 65, 67, 6, 1, 8, 75, 11, 2, 81, 83, 5, 87, 9, 13, 3, 95, 1, 99, 101, 18, 15, 107, 109, 111, 8, 10, 117, 2, 121, 24, 125, 1, 129, 131, 19, 135, 25, 139, 6
Offset: 0
Examples
a(2): 2+3+4 = 9, three summands, so a(2)=3. a(3): 3+4+5+6+7 = 25, five summands, so a(3)=5. a(12): 12+13 = 25, so a(12)=2.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Programs
-
C
int main() { // OK with GCC unsigned long long i, n, sum, sr; for (n=0; n<333; ++n) { for (sum=0, i=n; i==n || sr*sr!=sum; ++i) sr=sqrt(sum+=i); printf("%llu, ", i-n); } }
-
Mathematica
lks[n_]:=Module[{k=1},While[!IntegerQ[Sqrt[Total[Range[n,n+k-1]]]], k++];k]; lks/@Range[0,80] (* Harvey P. Dale, Mar 14 2016 *)
Comments