cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214753 Number T(n,k) of solid standard Young tableaux of n cells and height = k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 4, 1, 0, 10, 16, 6, 1, 0, 26, 66, 34, 8, 1, 0, 76, 296, 192, 58, 10, 1, 0, 232, 1334, 1134, 406, 88, 12, 1, 0, 764, 6322, 6716, 2918, 730, 124, 14, 1, 0, 2620, 30930, 40872, 20718, 6118, 1186, 166, 16, 1, 0, 9496, 158008, 255308, 149826, 50056, 11310, 1796, 214, 18, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 02 2012

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,    1;
  0,   4,    4,    1;
  0,  10,   16,    6,   1;
  0,  26,   66,   34,   8,  1;
  0,  76,  296,  192,  58, 10,  1;
  0, 232, 1334, 1134, 406, 88, 12,  1;
		

Crossrefs

Columns k=0-10 give: A000007(n), A000085(n) for n>0, A273582, A273583, A273584, A273585, A273586, A273587, A273588, A273589, A273590.
Diagonal and lower diagonal give: A000012, A005843.
Row sums give: A207542.
T(2n,n) gives A273591.
Cf. A215086.

Programs

  • Maple
    b:= proc(n, k, l) option remember; `if`(n=0, 1,
           b(n-1, k, [l[], [1]])+ add(`if`(i=1 or nops(l[i]) `if`(k=0, `if`(n=0, 1, 0), b(n, min(n, k), [])):
    T:= (n, k)-> A(n,k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, k_, L_] := b[n, k, L] = If[n == 0, 1, b[n-1, k, Append[L, {1}]] + Sum[If[i == 1 || Length[L[[i]]] < Length[L[[i-1]]], b[n-1, k, ReplacePart[L, i -> Append[L[[i]], 1]]], 0] + Sum[If[L[[i, j]] < k && (i == 1 || L[[i, j]] < L[[i-1, j]]) && (j == 1 || L[[i, j]] < L[[i, j-1]]), b[n-1, k, ReplacePart[L, i -> ReplacePart[ L[[i]], j -> L[[i, j]]+1]]], 0], {j, 1, Length[L[[i]]]}], {i, 1, Length[L]}]];
    A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Min[n, k], {}]];
    T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 23 2016, after Alois P. Heinz *)

Formula

T(n,k) = A215086(n,k) - A215086(n,k-1) for k>0, T(n,0) = A215086(n,0) = A000007(n).