A214754 Primes that can be written in binary representation as a concatenation of odd primes.
23, 29, 31, 47, 59, 61, 71, 79, 109, 113, 127, 151, 157, 167, 179, 191, 223, 229, 233, 239, 241, 251, 271, 283, 317, 349, 359, 367, 373, 379, 383, 431, 433, 439, 457, 463, 467, 479, 487, 491, 499, 503, 509, 541, 563, 599, 607, 631, 701, 719, 727, 733, 743, 751, 757
Offset: 1
Examples
31 is 11111 in binary, 11 is 3 in decimal, 111 is 7, partition exists: 11_111, so 31 is in the sequence.
Links
- David Radcliffe, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A090423.
Programs
-
Python
# oddPrimes = [3, ... , 757] def tryPartitioning(binString): # First digit is not 0 if binString=='10': return 0 l = len(binString) for t in range(2, l-1): substr1 = binString[:t] if (int('0b'+substr1,2) in oddPrimes) or (t>=4 and tryPartitioning(substr1)): substr2 = binString[t:] if substr2[0]!='0': if (int('0b'+substr2,2) in oddPrimes) or (l-t>=4 and tryPartitioning(substr2)): return 1 return 0 for p in oddPrimes: if tryPartitioning(bin(p)[2:]): print(p, end=', ')
Comments