Original entry on oeis.org
5, 5, 5, 10, 25, 31, 104, 159, 190, 219, 1186, 1832, 2227, 3388, 14358, 30804, 31547, 40935, 103522, 104072, 149690, 325853, 1094426, 1319950, 2850175, 6957880, 10539433, 10655464
Offset: 1
A214757(4) = 29, so a(4) = primepi(A214757(4)) = primepi(29) = 10.
A214756
a(n) = largest Ramanujan prime R_k in A104272 that is <= A002386(n).
Original entry on oeis.org
2, 2, 2, 17, 71, 107, 503, 881, 1103, 1301, 9521, 15671, 19543, 31387, 155849, 360289, 370061, 492067, 1349147, 1356869, 2010553, 4652239, 17051297, 20831119, 47326519, 122164649, 189695483, 191912659
Offset: 1
A104272(94) = 1301 < 1327 = A002386(10), so a(10) = 1301.
-
use ntheory ":all"; sub a_from_2386 { my $n = shift; $n = prev_prime($n) while !is_ramanujan_prime($n); $n } # Dana Jacobsen, Jul 13 2016
-
perl -Mntheory=:all -nE 'my $n=$1 if /(\d+)$/; $r=ramanujan_primes($n>1e6 ? $n-1e6 : 2, $n); say ++$x," ",$r->[-1];' b002386.txt # Dana Jacobsen, Jul 13 2016
Original entry on oeis.org
1, 1, 1, 7, 20, 28, 96, 152, 185, 212, 1179, 1829, 2217, 3382, 14350, 30780, 31528, 40929, 103498, 104047, 149674, 325845, 1094396, 1319933, 2850163, 6957867, 10539421, 10655453
Offset: 1
A214756(5) = 71, so a(5) = primepi(A214756(5)) = primepi(71) = 20.
A214926
Difference A214925(n) - A214924(n), prime count between Ramanujan primes bounding maximal gap primes.
Original entry on oeis.org
4, 4, 4, 3, 5, 3, 8, 7, 5, 7, 7, 3, 10, 6, 8, 24, 19, 6, 24, 25, 16, 8, 30, 17, 12, 13, 12, 11
Offset: 1
a(4) = pi(A214757(4)) - pi(A214756(4)) = 10 - 7 = 3
Showing 1-4 of 4 results.
Comments