A214802 a(n+1) is the smallest integer m > a(n) such that all of sums (a(i))^2 + m^2, i=1..n are squarefree.
1, 2, 3, 5, 13, 17, 23, 37, 49, 53, 67, 83, 97, 101, 103, 113, 137, 149, 151, 163, 167, 173, 263, 317, 337, 347, 353, 383, 401, 433, 451, 487, 503, 551, 563, 601, 701, 751, 773, 947, 967, 977, 983, 1013, 1033, 1049, 1051, 1087, 1187, 1201, 1249, 1283, 1333
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
s={1}; m=1; Do[f=0; Do[If[!SquareFreeQ[s[[i]]^2+p^2], f=1; Break[]], {i,m}]; If[f<1, AppendTo[s, p]; m++], {p, 2, 10^3}]; s
-
PARI
v=List([1]); for(m=2,1e3,for(j=1,#v,if(issquare(m^2+v[j]^2), next(2))); listput(v,m)); Vec(v) \\ Charles R Greathouse IV, Jul 30 2012
Comments