A214811 Triangle read by rows: row n lists prime factors of (p^p-1)/(p-1) where p = prime(n).
3, 13, 11, 71, 29, 4733, 15797, 1806113, 53, 264031, 1803647, 10949, 1749233, 2699538733, 109912203092239643840221, 461, 1289, 831603031789, 1920647391913, 59, 16763, 84449, 2428577, 14111459, 58320973, 549334763, 568972471024107865287021434301977158534824481, 149, 1999, 7993, 16651, 17317, 10192715656759, 41903425553544839998158239
Offset: 1
Examples
Triangle begins: [3] [13] [11, 71] [29, 4733] [15797, 1806113] [53, 264031, 1803647] [10949, 1749233, 2699538733] [109912203092239643840221] [461, 1289, 831603031789, 1920647391913] [59, 16763, 84449, 2428577, 14111459, 58320973, 549334763] [568972471024107865287021434301977158534824481] [149, 1999, 7993, 16651, 17317, 10192715656759, 41903425553544839998158239] ...
Links
- J. Levine and R. E. Dalton, Minimum Periods, Modulo p, of First Order Bell Exponential Integrals, Mathematics of Computation, 16 (1962), 416-423. See Table 3.
Programs
-
Maple
f:=proc(n) local i,t1,p,B,F; p:=ithprime(n); B:=(p^p-1)/(p-1); F:=ifactors(B)[2]; lprint(n,p,B,F); t1:=[seq(F[i][1],i=1..nops(F))]; sort(t1); end;