cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001039 a(n) = (p^p-1)/(p-1) where p = prime(n).

Original entry on oeis.org

3, 13, 781, 137257, 28531167061, 25239592216021, 51702516367896047761, 109912203092239643840221, 949112181811268728834319677753, 91703076898614683377208150526107718802981
Offset: 1

Views

Author

Keywords

Comments

From Luis H. Gallardo, May 27 2022: (Start)
Let r be a root of the trinomial x^p-x-1 in a fixed algebraic closure F of the finite field F_p. Radoux conjectured in 1975 (see References) that a(n) equals the multiplicative order of r in F. The conjecture seems still open.
Moreover, S. Mattarei proved in 2002 that there exists a finite-dimensional non-nilpotent Lie algebra of characteristic p which admits a nonsingular derivation of order a(n) if p is odd and of order 73 if p = 2. (End)

References

  • S. Mattarei, The orders of nonsingular derivations of modular Lie algebras, Isr. J. Math., 132 (2002), 265-275.
  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
  • C. Radoux, Nombres de Bell, modulo p premier, et extensions de degré p de F_p. C.R. Acad. Sci. Paris Ser. A-B, 281(21) (1975) A879-A882.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    for i from 1 to 20 do printf(`%d,`,(ithprime(i)^ithprime(i) -1)/(ithprime(i)-1)) od:
  • Mathematica
    Table[(Prime[n]^Prime[n] - 1)/(Prime[n] - 1), {n, 1, 10}]
    (#^#-1)/(#-1)&/@Prime[Range[10]] (* Harvey P. Dale, Apr 09 2016 *)

Extensions

More terms from James Sellers, Jul 10 2000

A214812 Largest prime factor of (p^p-1)/(p-1) where p = prime(n).

Original entry on oeis.org

3, 13, 71, 4733, 1806113, 1803647, 2699538733, 109912203092239643840221, 1920647391913, 549334763, 568972471024107865287021434301977158534824481, 41903425553544839998158239, 5926187589691497537793497756719, 19825223972382274003506149120708429799166030881820329892377241, 194707033016099228267068299180244011637
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1,1]]&/@Table[(p^p-1)/(p-1),{p,Prime[Range[15]]}] (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    a(n) = my(p=prime(n)); vecmax(factor((p^p-1)/(p-1))[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A001039(n)). - Daniel Suteu, May 26 2022

A248843 Table read by rows in which row n lists divisors of (p^p-1)/(p-1) where p = prime(n).

Original entry on oeis.org

1, 3, 1, 13, 1, 11, 71, 781, 1, 29, 4733, 137257, 1, 15797, 1806113, 28531167061, 1, 53, 264031, 1803647, 13993643, 95593291, 476218721057, 25239592216021, 1, 10949, 1749233, 2699538733, 19152352117, 29557249587617, 4722122236541789
Offset: 1

Views

Author

Keywords

Examples

			Table begins:
  [1, 3],
  [1, 13],
  [1, 11, 71, 781],
  [1, 29, 4733, 137257],
  [1, 15797, 1806113, 28531167061],
  [1, 53, 264031, 1803647, 13993643, 95593291, 476218721057, 25239592216021],
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; Divisors[(p^p - 1)/(p - 1)], {n, 1, 10}] // Flatten
Showing 1-3 of 3 results.