cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A125135 Triangle read by rows in which row n lists prime factors of p^p - 1 where p = prime(n).

Original entry on oeis.org

3, 2, 13, 2, 2, 11, 71, 2, 3, 29, 4733, 2, 5, 15797, 1806113, 2, 2, 3, 53, 264031, 1803647, 2, 2, 2, 2, 10949, 1749233, 2699538733, 2, 3, 3, 109912203092239643840221, 2, 11, 461, 1289, 831603031789, 1920647391913
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2007

Keywords

Examples

			Triangle begins:
3;
2, 13;
2, 2, 11, 71;
2, 3, 29, 4733;
2, 5, 15797, 1806113;
2, 2, 3, 53, 264031, 1803647;
2, 2, 2, 2, 10949, 1749233, 2699538733;
2, 3, 3, 109912203092239643840221;
2, 11, 461, 1289, 831603031789, 1920647391913;
2, 2, 7, 59, 16763, 84449, 2428577, 14111459, 58320973, 549334763;
...
n=4: p=7, 7^7-1 = 823542 = 2*3*29*4733 gives row 4.
		

Crossrefs

Programs

  • Magma
    for p in [ n : n in [1..100] | IsPrime(n) ] do "\nDoing p =", p; n := p^p -1; Factorisation(n); end for; // John Cannon
  • Maple
    T:= n-> (p-> sort(map(i-> i[1]$i[2], ifactors(p^p-1)[2]))[])(ithprime(n)):
    seq(T(n), n=1..10);  # Alois P. Heinz, May 20 2022

A214811 Triangle read by rows: row n lists prime factors of (p^p-1)/(p-1) where p = prime(n).

Original entry on oeis.org

3, 13, 11, 71, 29, 4733, 15797, 1806113, 53, 264031, 1803647, 10949, 1749233, 2699538733, 109912203092239643840221, 461, 1289, 831603031789, 1920647391913, 59, 16763, 84449, 2428577, 14111459, 58320973, 549334763, 568972471024107865287021434301977158534824481, 149, 1999, 7993, 16651, 17317, 10192715656759, 41903425553544839998158239
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Examples

			Triangle begins:
[3]
[13]
[11, 71]
[29, 4733]
[15797, 1806113]
[53, 264031, 1803647]
[10949, 1749233, 2699538733]
[109912203092239643840221]
[461, 1289, 831603031789, 1920647391913]
[59, 16763, 84449, 2428577, 14111459, 58320973, 549334763]
[568972471024107865287021434301977158534824481]
[149, 1999, 7993, 16651, 17317, 10192715656759, 41903425553544839998158239]
...
		

Crossrefs

Programs

  • Maple
    f:=proc(n) local i,t1,p,B,F;
    p:=ithprime(n);
    B:=(p^p-1)/(p-1);
    F:=ifactors(B)[2];
    lprint(n,p,B,F);
    t1:=[seq(F[i][1],i=1..nops(F))];
    sort(t1);
    end;

A104132 Largest prime factor of pip(n)^pip(n)-1 where pip(n) is the n-th prime-indexed prime.

Original entry on oeis.org

13, 71, 1806113, 2699538733, 568972471024107865287021434301977158534824481, 5926187589691497537793497756719
Offset: 1

Views

Author

Cino Hilliard, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=Module[{p=Prime[Prime[n]]},FactorInteger[p^p-1][[-1,1]]]; Array[lpf,6] (* Harvey P. Dale, Nov 09 2017 *)
  • PARI
    piptopipm1(n) = { local(x, y); for(x=1, n, y=pip(x)^pip(x)-1; print1(bdiv(y)", "); ) }
    pip(n) = { return(prime(prime(n))) }
    bdiv(n) = { local(x); x=ifactor(n); return(x[length(x)]) }
    ifactor(n, m=0) = { local(f, j, k, flist); flist=[]; f=Vec(factor(n, m)); for(j=1, length(f[1]), for(k = 1, f[2][j], flist = concat(flist, f[1][j]) ); ); return(flist) }

Formula

a(n) = A006530(A048861(A006450(n))). - Amiram Eldar, May 23 2020

Extensions

a(6) corrected by Harvey P. Dale, Nov 09 2017

A248843 Table read by rows in which row n lists divisors of (p^p-1)/(p-1) where p = prime(n).

Original entry on oeis.org

1, 3, 1, 13, 1, 11, 71, 781, 1, 29, 4733, 137257, 1, 15797, 1806113, 28531167061, 1, 53, 264031, 1803647, 13993643, 95593291, 476218721057, 25239592216021, 1, 10949, 1749233, 2699538733, 19152352117, 29557249587617, 4722122236541789
Offset: 1

Views

Author

Jean-François Alcover, Dec 03 2014

Keywords

Examples

			Table begins:
  [1, 3],
  [1, 13],
  [1, 11, 71, 781],
  [1, 29, 4733, 137257],
  [1, 15797, 1806113, 28531167061],
  [1, 53, 264031, 1803647, 13993643, 95593291, 476218721057, 25239592216021],
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; Divisors[(p^p - 1)/(p - 1)], {n, 1, 10}] // Flatten

A354226 a(n) is the number of distinct prime factors of (p^p - 1)/(p - 1) where p = prime(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 1, 4, 7, 1, 7, 5, 3, 3, 5, 3, 4, 6, 4, 10, 5, 4, 6, 6, 9, 5, 4, 5, 8, 6, 4, 11
Offset: 1

Views

Author

Luis H. Gallardo, May 20 2022

Keywords

Comments

a(34) > 3, and depends on the full factorization of the 296-digit composite number (139^139 - 1)/138. - Tyler Busby, Jan 22 2023
Sequence continues as ?, 8, ?, 5, 8, 4, 5, ?, 8, ?, 8, 7, 6, 3, 3, ..., where ? represents uncertain terms. - Tyler Busby, Jan 22 2023

Examples

			a(3)=2, since (5^5 - 1)/(5 - 1) = 11*71.
		

Crossrefs

Programs

  • PARI
    a(n) = my(p=prime(n)); omega((p^p-1)/(p-1)); \\ Michel Marcus, May 22 2022
    
  • Python
    from sympy import factorint, prime
    def a(n): p = prime(n); return len(factorint((p**p-1)//(p-1)))
    print([a(n) for n in range(1, 12)]) # Michael S. Branicky, May 23 2022

Formula

a(n) = A001221(A001039(n)).

Extensions

a(18)-a(33) from Amiram Eldar, May 20 2022
Showing 1-5 of 5 results.