cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006486 a(n) = largest prime factor of n^n - 1.

Original entry on oeis.org

3, 13, 17, 71, 43, 4733, 241, 757, 9091, 1806113, 20593, 1803647, 8108731, 39225301, 6700417, 2699538733, 465841, 109912203092239643840221, 222361, 227633407, 285451051007, 1920647391913, 1134793633, 50150933101, 3574533119, 12557612956332313, 1100860153
Offset: 2

Views

Author

Dennis S. Kluk (mathemagician(AT)ameritech.net)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(n^n-1)):n in [2..28]]; // Marius A. Burtea, Aug 24 2019
  • Mathematica
    Table[Max@Transpose[FactorInteger[n^n - 1]][[1]], {n, 2, 28}] (* Arkadiusz Wesolowski, Aug 06 2012 *)
  • PARI
    for(k=2, 28, my(x=factor(k^k-1), f=x[#x[, 1], 1]); print1(f,", ")) \\ Hugo Pfoertner, Aug 23 2019
    

Formula

a(n) = A006530(A048861(n)). - Michel Marcus, Aug 24 2019

Extensions

Corrected by T. D. Noe, Nov 14 2006
5 more terms from Arkadiusz Wesolowski, Aug 06 2012
Terms up to a(126) in b-file added by Sean A. Irvine, Apr 25 2017
Terms a(127)-a(138) in b-file added by Max Alekseyev, Aug 26 2021

A088730 Numbers of the form p^p - 1, where p is a prime.

Original entry on oeis.org

3, 26, 3124, 823542, 285311670610, 302875106592252, 827240261886336764176, 1978419655660313589123978, 20880467999847912034355032910566, 2567686153161211134561828214731016126483468
Offset: 1

Views

Author

Cino Hilliard, Nov 23 2003

Keywords

Comments

Sum of reciprocals = 0.3721161884983118696170302604..

Examples

			a(1) = 3 because the first prime is 2 and 2^2 - 1 = 3.
a(2) = 26 because the second prime is 3 and 3^3 - 1 = 26.
a(3) = 3124 because the fifth prime is 5 and 5^5 - 1 = 3124.
		

Crossrefs

Cf. A051674, A088807, A125135 (factorizations).

Programs

Formula

a(n) = A051674(n) - 1. - R. J. Mathar, Jul 15 2007

Extensions

More terms from Ray Chandler, Feb 21 2004

A125137 a(n) = p^p + 1, where p = prime(n).

Original entry on oeis.org

5, 28, 3126, 823544, 285311670612, 302875106592254, 827240261886336764178, 1978419655660313589123980, 20880467999847912034355032910568, 2567686153161211134561828214731016126483470, 17069174130723235958610643029059314756044734432, 10555134955777783414078330085995832946127396083370199442518
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2007

Keywords

Crossrefs

See A125136 for factorizations. Cf. A088730, A125135.

Programs

Formula

a(n) = A051674(n)+1. - R. J. Mathar, Apr 23 2007

A214812 Largest prime factor of (p^p-1)/(p-1) where p = prime(n).

Original entry on oeis.org

3, 13, 71, 4733, 1806113, 1803647, 2699538733, 109912203092239643840221, 1920647391913, 549334763, 568972471024107865287021434301977158534824481, 41903425553544839998158239, 5926187589691497537793497756719, 19825223972382274003506149120708429799166030881820329892377241, 194707033016099228267068299180244011637
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1,1]]&/@Table[(p^p-1)/(p-1),{p,Prime[Range[15]]}] (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    a(n) = my(p=prime(n)); vecmax(factor((p^p-1)/(p-1))[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A001039(n)). - Daniel Suteu, May 26 2022

A309941 Number of prime factors of n^n - 1, counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 7, 8, 6, 4, 8, 6, 5, 7, 7, 7, 10, 4, 11, 10, 8, 6, 13, 13, 11, 9, 13, 10, 15, 4, 13, 12, 13, 10, 18, 11, 8, 10, 16, 9, 16, 6, 15, 18, 9, 5, 19, 20, 14, 15, 17, 8, 16, 12, 18, 10, 10, 5, 26, 8, 10, 14, 20, 19, 17, 9, 17, 12, 19, 7, 29, 15, 8, 11, 20, 13, 21, 8
Offset: 2

Views

Author

Hugo Pfoertner, Aug 24 2019

Keywords

Examples

			a(3) = 2: 3^3 - 1 = 26 = 2 * 13.
a(5) = 4: 5^5 - 1 = 3124 = 2^2 * 11 * 71.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeOmega[n^n - 1]; Array[a, 45, 2] (* Amiram Eldar, Jul 04 2024 *)
  • PARI
    for(k=2, 50, print1(bigomega(k^k-1),", "))

A352711 The left Aurifeuillian factor of p^p - 1 for primes p congruent to 1 (mod 4).

Original entry on oeis.org

11, 1803647, 2699538733, 112663560435723374699, 6243610407478181159725577611, 67643278270835231300426724641533, 253382315888712050791030544452181354268272663, 133904013361225746608283522164245432446284642589451147, 4429523820749528526448423858097183945539957285504166342434080091097
Offset: 1

Views

Author

Patrick A. Thomas, Mar 30 2022

Keywords

Comments

For prime factorizations of p^p - 1 see A125135.
Named after the French mathematician Léon-François-Antoine Aurifeuille (1822-1882). - Bernard Schott, Nov 04 2022

Examples

			112663560435723374699 is the smaller Aurifeuillian factor of 29^29-1, and 29 is the 4th term of A002144, so a(4) = 112663560435723374699.
		

Crossrefs

Formula

If R is (p^p-1)/(p-1), where p == 1 (mod 4) and p > 5, then an approximation of the left Aurifeuillian factor of R is (1/e) * sqrt(R/(1+z)), where z =
2/(3p) + 28/(45p^2) + 1706/(2835p^3) if p=1,79,109,121,151 or 169 (mod 210),
2/(3p) + 28/(45p^2) + 86/(2835p^3) if p=19,31,61,139,181 or 199 (mod 210),
2/(3p) - 8/(45p^2) + 194/(2835p^3) if p=37,43,67,127,163 or 193 (mod 210),
2/(3p) - 8/(45p^2) - 1426/(2835p^3) if p=13,73,97,103,157 or 187 (mod 210),
-2/(3p) - 8/(45p^2) + 1426/(2835p^3) if p=23,53,107,113,137 or 197 (mod 210),
-2/(3p) - 8/(45p^2) - 194/(2835p^3) if p=17,47,83,143,167 or 173 (mod 210),
-2/(3p) + 28/(45p^2) - 86/(2835p^3) if p=11,29,71,149,179 or 191 (mod 210),
-2/(3p) + 28/(45p^2) - 1706/(2835p^3) if p=41,59,89,101,131 or 209 (mod 210).

A352732 The right Aurifeuillian factor of p^p - 1, for primes p congruent to 1 (mod 4).

Original entry on oeis.org

71, 13993643, 19152352117, 813955076015309926319, 46959719470144429555105032871, 491873569944394295636860313807677, 1848593595048531176470116001230356265643249547, 1000403244183535565720394723140528028235711874491322863, 33027769942300819203735411144251223948236849608414254057770836237073
Offset: 1

Views

Author

Patrick A. Thomas, Mar 30 2022

Keywords

Comments

For prime factorizations of p^p - 1 see A125135.

Examples

			813955076015309926319 is the larger Aurifeuillian factor of 29^29-1, and 29 is the 4th term of A002144, so a(4) = 813955076015309926319.
		

Crossrefs

A125136 Triangle read by rows in which row n gives list of prime factors of p^p + 1 where p = prime(n).

Original entry on oeis.org

5, 2, 2, 7, 2, 3, 521, 2, 2, 2, 113, 911, 2, 2, 3, 23, 89, 199, 58367, 2, 7, 13417, 20333, 79301, 2, 3, 3, 45957792327018709121, 2, 2, 5, 108301, 1049219, 870542161121, 2, 2, 2, 3, 47, 139, 1013, 1641281, 52626071, 1522029233, 2, 3, 5, 233, 6864997
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2007

Keywords

Comments

Product over the n-th row of the table is A051674(n) + 1. The number of elements in the n-th row is A115973(n). - R. J. Mathar, Jan 22 2007
(p + 1) divides p^p + 1 for odd prime p. - Alexander Adamchuk, Jan 22 2007

Examples

			Rows read
  5;
  2, 2, 7;
  2, 3, 521;
  2, 2, 2, 113, 911;
  2, 2, 3, 23, 89, 199, 58367;
  2, 7, 13417, 20333, 79301;
  2, 3, 3, 45957792327018709121;
  2, 2, 5, 108301, 1049219, 870542161121;
  2, 2, 2, 3, 47, 139, 1013, 1641281, 52626071, 1522029233;
  2, 3, 5, 233, 6864997, 9487923853, 5639663878716545087233;
  2, 2, 2, 2, 2, 373, 1613, 62869, 145577, 35789156484227, 2706690202468649;
  etc.
		

Crossrefs

Cf. A007571 = largest factor of n^n + 1.

Programs

  • Maple
    pfs := proc(n) local ifs,a,e,b ; ifs := ifactors(n)[2] ; a := [] ; for b from 1 to nops(ifs) do for e from 1 to op(2,op(b,ifs)) do a := [op(a),op(1,op(b,ifs))] ; od ; od ; RETURN(a) ; end; A125136 := proc(nmax) local a,p,n,pp ; a := [] ; p := 2 ; while nops(a) < nmax do a := [op(a),op(pfs(p^p+1))] ; p := nextprime(p) ; od ; RETURN(a) ; end; A125136(40) ; # R. J. Mathar, Jan 22 2007
  • Mathematica
    lpf[n_]:=Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]; lpf/@(#^#+1&/@ Prime[Range[10]])//Flatten (* Harvey P. Dale, Oct 18 2020 *)

Extensions

More terms from Alexander Adamchuk and R. J. Mathar, Jan 22 2007

A214811 Triangle read by rows: row n lists prime factors of (p^p-1)/(p-1) where p = prime(n).

Original entry on oeis.org

3, 13, 11, 71, 29, 4733, 15797, 1806113, 53, 264031, 1803647, 10949, 1749233, 2699538733, 109912203092239643840221, 461, 1289, 831603031789, 1920647391913, 59, 16763, 84449, 2428577, 14111459, 58320973, 549334763, 568972471024107865287021434301977158534824481, 149, 1999, 7993, 16651, 17317, 10192715656759, 41903425553544839998158239
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Examples

			Triangle begins:
[3]
[13]
[11, 71]
[29, 4733]
[15797, 1806113]
[53, 264031, 1803647]
[10949, 1749233, 2699538733]
[109912203092239643840221]
[461, 1289, 831603031789, 1920647391913]
[59, 16763, 84449, 2428577, 14111459, 58320973, 549334763]
[568972471024107865287021434301977158534824481]
[149, 1999, 7993, 16651, 17317, 10192715656759, 41903425553544839998158239]
...
		

Crossrefs

Programs

  • Maple
    f:=proc(n) local i,t1,p,B,F;
    p:=ithprime(n);
    B:=(p^p-1)/(p-1);
    F:=ifactors(B)[2];
    lprint(n,p,B,F);
    t1:=[seq(F[i][1],i=1..nops(F))];
    sort(t1);
    end;

A248843 Table read by rows in which row n lists divisors of (p^p-1)/(p-1) where p = prime(n).

Original entry on oeis.org

1, 3, 1, 13, 1, 11, 71, 781, 1, 29, 4733, 137257, 1, 15797, 1806113, 28531167061, 1, 53, 264031, 1803647, 13993643, 95593291, 476218721057, 25239592216021, 1, 10949, 1749233, 2699538733, 19152352117, 29557249587617, 4722122236541789
Offset: 1

Views

Author

Jean-François Alcover, Dec 03 2014

Keywords

Examples

			Table begins:
  [1, 3],
  [1, 13],
  [1, 11, 71, 781],
  [1, 29, 4733, 137257],
  [1, 15797, 1806113, 28531167061],
  [1, 53, 264031, 1803647, 13993643, 95593291, 476218721057, 25239592216021],
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; Divisors[(p^p - 1)/(p - 1)], {n, 1, 10}] // Flatten
Showing 1-10 of 11 results. Next