cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A362957 a(n) is the least prime p such that the number of distinct prime factors of p^n + 1 sets a new record.

Original entry on oeis.org

2, 3, 5, 43, 17, 47, 151, 1697, 59, 2153, 521, 13183, 30089, 20753, 3769
Offset: 1

Views

Author

Hugo Pfoertner, Jun 11 2023

Keywords

Comments

a(16) > 2.3*10^6; to see if there has been any progress see also A280005(16).

Crossrefs

Programs

  • PARI
    smallf(q,nmax) = {my(qq=q,j=0); forprime (p=2, nmax, my(k=0); while (qq%p==0, k++; qq/=p); if (k>0, j++;)); [j,qq]};
    a362957(upto) = {my(nfmax=0); for (n=1, upto, forprime (p=2, oo, my(f=p^n+1, s=smallf(f,p)); if (s[1]nfmax, print1(p,", "); nfmax=nf; break)))};
    a362957(12)

A238981 Sum of n-th powers of unitary divisors of n (d such that d divides n, gcd(d, n/d) = 1).

Original entry on oeis.org

1, 5, 28, 257, 3126, 47450, 823544, 16777217, 387420490, 10009766650, 285311670612, 8916117756914, 302875106592254, 11112685048647250, 437893920912786408, 18446744073709551617, 827240261886336764178, 39346558169931834836690, 1978419655660313589123980
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Sum[If[GCD[i, n] == i && GCD[i, n/i] == 1, i^k, 0], {i, n}]; Table[a[n, n], {n, 1, 24}]
    a[1] = 1; a[n_] := Times @@ (1 + First[#]^(n * Last[#]) &/@ FactorInteger[n]);  Array[a, 19] (* Amiram Eldar, Aug 10 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d^n*(gcd(d, n/d) == 1)); \\ Michel Marcus, Mar 19 2014

Formula

For prime p, a(p) = p^p + 1; A125137 is a subsequence. - Michel Marcus, Nov 20 2015
a(n) = n^n+1 (A014566) if n is a prime power (A246655). - Michel Marcus, Nov 21 2015
a(n) = Sum_{d|n, gcd(d,n/d)=1} d^n. - Wesley Ivan Hurt, Apr 28 2023

A115973 Number of distinct prime factors of p^p + 1 where p is prime(n).

Original entry on oeis.org

1, 2, 3, 3, 6, 5, 3, 5, 8, 7, 7, 7, 6, 8, 10, 8, 9, 8, 7, 8, 4, 7, 12, 6, 8, 7, 12, 11, 6, 9, 7, 17, 9, 9
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 14 2006

Keywords

Comments

a(35) >= 9. See link to factordb.com - Hugo Pfoertner, Aug 07 2019

Examples

			If p=29 then (29^29 + 1) contains 7 distinct prime factors.
		

Crossrefs

Cf. A125137.

Programs

  • Mathematica
    f[n_] := Length@ FactorInteger[Prime[n]^Prime[n] + 1]; Array[f, 20] (* Robert G. Wilson v, Apr 06 2006 *)
  • PARI
    { for(n=1,20, p = prime(n); d = factor(p^p+1); dec=matsize(d); print1(dec[1],","); ); } \\ R. J. Mathar, Mar 29 2006

Extensions

8 more terms from R. J. Mathar, Mar 29 2006
a(19)-a(25) from Robert G. Wilson v, Apr 06 2006
a(26)-a(32) from Sean A. Irvine, Oct 20 2011
a(33)-a(34) from Hugo Pfoertner, Aug 07 2019
a(28) corrected by Sean A. Irvine, Aug 04 2023

A376432 a(n) is the least odd prime factor of prime(n)^prime(n)+1.

Original entry on oeis.org

5, 7, 3, 113, 3, 7, 3, 5, 3, 3, 373, 19, 3, 11, 3, 3, 3, 31, 17, 3, 37, 5, 3, 3, 7, 3, 13, 3, 5, 3, 921259, 3, 3, 5, 3, 19, 79, 41, 3, 3, 3, 7, 3, 97, 3, 5, 53, 7, 3, 5, 3, 3, 11, 3, 3, 3, 3, 17, 139, 3, 71, 3, 7, 3, 157, 3, 83, 13, 3, 5, 3, 3, 23, 11, 5, 3, 3, 199
Offset: 1

Views

Author

Hugo Pfoertner, Sep 27 2024

Keywords

Examples

			While almost all terms lie in the range between 3 and (prime(n)+1)/2, there are some notable outliers: a(31) = 921259 with prime(31)=127 (127^127+1=2^7*a(31)*C268), and a(1028)=1528928750837 with prime(1028)=8191 (8191^8191+1=2^13*a(1028)*C32039), Cx being composite with x decimal digits.
		

Crossrefs

Programs

  • PARI
    a376432(n) = my(pp=prime(n)^prime(n)+1); forprime (p=3, oo, if(pp%p==0, return(p)))

Formula

a(n) = A078701(A125137(n)). - Michel Marcus, Sep 27 2024

A345263 a(n) = Sum_{d|n} d^rad(d).

Original entry on oeis.org

1, 5, 28, 21, 3126, 46688, 823544, 85, 757, 10000003130, 285311670612, 3032688, 302875106592254, 11112006826381564, 437893890380862528, 341, 827240261886336764178, 34059641, 1978419655660313589123980, 10250000003146, 5842587018385982521381947992, 341427877364219557681958394200
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2021

Keywords

Comments

If p is prime, a(p) = Sum_{d|p} d^rad(d) = 1^1 + p^p = p^p + 1.
Inverse Möbius transform of n^rad(n). - Wesley Ivan Hurt, Mar 31 2025

Examples

			a(4) = Sum_{d|4} d^rad(d) = 1^1 + 2^2 + 4^2 = 21.
a(6) = Sum_{d|6} d^rad(d) = 1^1 + 2^2 + 3^3 + 6^6 = 46688.
		

Crossrefs

Cf. A007947 (rad), A125137, A345261.

Programs

  • Mathematica
    Table[Sum[(1 - Ceiling[n/i] + Floor[n/i]) i^Product[k^((PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[i/k] + Floor[i/k])), {k, i}], {i, n}], {n, 30}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    a(n) = sumdiv(n, d, d^rad(d)); \\ Michel Marcus, Jun 12 2021

Formula

a(prime(n)) = A125137(n). - Michel Marcus, Jun 12 2021

A277208 Numbers m such that m-1 = (tau(m-1)-1)^k for some k>=0, where tau(m) is the number of divisors of m (A000005).

Original entry on oeis.org

2, 5, 17, 28, 3126, 3376, 65537, 823544, 3748097, 52521876
Offset: 1

Views

Author

Jaroslav Krizek, Oct 10 2016

Keywords

Comments

Corresponding pairs of numbers (tau(m-1)-1, k): (0, 0); (2, 2); (4, 2); (3, 3); (5, 5); (15, 3); (16, 4); (7, 7); ...
Numbers from A125137 (numbers of the form p^p + 1 where p = prime) are terms: 285311670612, 302875106592254, 827240261886336764178, 1978419655660313589123980, 20880467999847912034355032910568, ...
Prime terms are in A258429: 2, 5, 17, 65537, ...
A Fermat prime from A019434 of the form F(n) = 2^(2^n) + 1 is a term if k = 2^n * log(2) / log(2^n) is an integer.
a(11), if it exists, is > 10^10. - Lars Blomberg, Nov 14 2016

Examples

			3376 is in the sequence because 3375 = (tau(3375)-1)^3 = 15^3.
		

Crossrefs

Programs

  • Magma
    Set(Sort([n: n in[2..1000000], k in [0..20] |  (n-1) eq (NumberOfDivisors(n-1)-1)^k]));
    
  • PARI
    isok(n) = {if (n==2, return(1)); my(dd = numdiv(n-1) - 1); if (dd > 1, my(k = 1); while(dd^k < n-1, k++); dd^k == n-1;);} \\ Michel Marcus, Oct 11 2016

Extensions

a(9)-a(10) from Michel Marcus, Oct 11 2016

A348393 a(n) = Sum_{d|n} (n^d)', where ' is the arithmetic derivative.

Original entry on oeis.org

0, 5, 28, 1060, 3126, 233885, 823544, 201351372, 2324524398, 70000350147, 285311670612, 142657631177872, 302875106592254, 100008061904383173, 3503151123048905408, 590295810427425653792, 827240261886336764178, 826274569583310299739525, 1978419655660313589123980, 2516582400000122880019968984
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 16 2021

Keywords

Examples

			a(4) = 1060; a(4) = (4^1)' + (4^2)' + (4^4)' = 4' + 16' + 256' = 4 + 32 + 1024 = 1060.
		

Crossrefs

Programs

  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := DivisorSum[n, d[n^#] &]; Array[a, 20] (* Amiram Eldar, Oct 16 2021 *)
  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    a(n) = sumdiv(n, d, ad(n^d)); \\ Michel Marcus, Oct 18 2021

Formula

If p is prime, a(p) = p^p + 1. See A125137. - Bernard Schott, Oct 18 2021
Showing 1-7 of 7 results.