cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238982 Numbers n dividing the sum of n-th powers of unitary divisors of n.

Original entry on oeis.org

1, 10, 45, 50, 130, 250, 315, 410, 735, 1125, 1250, 1690, 2050, 2205, 2210, 2373, 2565, 2745, 3045, 3250, 3285, 3321, 3465, 3645, 4225, 5050, 5330, 6125, 6250, 6615, 6890, 7875, 8619, 8835, 9135, 9225, 9555, 9933, 10250
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    udivs:= proc(n) local t,F;
      F:= map(t -> t[1]^t[2], ifactors(n)[2]);
      map(convert, combinat:-powerset(F),`*`);
    end proc:
    filter:= proc(n) local t,U;
      convert(map(t -> (t &^ n) mod n, udivs(n)),`+`) mod n = 0
    end proc:
    select(filter, [$1..20000]); # Robert Israel, Dec 07 2022
  • Mathematica
    AA[n_, k_] := AA[n, k] = Mod[Sum[If[GCD[i, n] == i && GCD[i, n/i] == 1, PowerMod[i, k, n], 0], {i, n}], n]; Select[Range[1000], Mod[AA[#, #], #] == 0 &]

A238983 Numbers n such that the sum of n-th powers of unitary divisors of n is congruent to -1 modulo n.

Original entry on oeis.org

1, 2, 265, 49217, 7870171, 592258417
Offset: 1

Views

Author

Keywords

Comments

a(7) > 10^10. - Hiroaki Yamanouchi, Oct 02 2014

Crossrefs

Programs

  • Mathematica
    AA[n_, k_] := AA[n, k] = Mod[Sum[If[GCD[i, n] == i && GCD[i, n/i] == 1, PowerMod[i, k, n], 0], {i, n}], n]; Select[Range[1000], Mod[AA[#, #], #] == #-1 &]
  • PARI
    isok(n) = (sumdiv(n, d, d^n*(gcd(d, n/d) == 1)) % n) == (n-1); \\ Michel Marcus, Sep 30 2014
    
  • PARI
    isok(n) = sumdiv(n, d, if (gcd(d, n/d) == 1, Mod(d, n)^n)) == Mod(n-1, n); \\ Michel Marcus, Oct 02 2014

Extensions

a(4)-a(5) from Hiroaki Yamanouchi, Sep 30 2014
a(6) from Hiroaki Yamanouchi, Oct 02 2014
Showing 1-2 of 2 results.