cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238981 Sum of n-th powers of unitary divisors of n (d such that d divides n, gcd(d, n/d) = 1).

Original entry on oeis.org

1, 5, 28, 257, 3126, 47450, 823544, 16777217, 387420490, 10009766650, 285311670612, 8916117756914, 302875106592254, 11112685048647250, 437893920912786408, 18446744073709551617, 827240261886336764178, 39346558169931834836690, 1978419655660313589123980
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Sum[If[GCD[i, n] == i && GCD[i, n/i] == 1, i^k, 0], {i, n}]; Table[a[n, n], {n, 1, 24}]
    a[1] = 1; a[n_] := Times @@ (1 + First[#]^(n * Last[#]) &/@ FactorInteger[n]);  Array[a, 19] (* Amiram Eldar, Aug 10 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d^n*(gcd(d, n/d) == 1)); \\ Michel Marcus, Mar 19 2014

Formula

For prime p, a(p) = p^p + 1; A125137 is a subsequence. - Michel Marcus, Nov 20 2015
a(n) = n^n+1 (A014566) if n is a prime power (A246655). - Michel Marcus, Nov 21 2015
a(n) = Sum_{d|n, gcd(d,n/d)=1} d^n. - Wesley Ivan Hurt, Apr 28 2023

A238982 Numbers n dividing the sum of n-th powers of unitary divisors of n.

Original entry on oeis.org

1, 10, 45, 50, 130, 250, 315, 410, 735, 1125, 1250, 1690, 2050, 2205, 2210, 2373, 2565, 2745, 3045, 3250, 3285, 3321, 3465, 3645, 4225, 5050, 5330, 6125, 6250, 6615, 6890, 7875, 8619, 8835, 9135, 9225, 9555, 9933, 10250
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    udivs:= proc(n) local t,F;
      F:= map(t -> t[1]^t[2], ifactors(n)[2]);
      map(convert, combinat:-powerset(F),`*`);
    end proc:
    filter:= proc(n) local t,U;
      convert(map(t -> (t &^ n) mod n, udivs(n)),`+`) mod n = 0
    end proc:
    select(filter, [$1..20000]); # Robert Israel, Dec 07 2022
  • Mathematica
    AA[n_, k_] := AA[n, k] = Mod[Sum[If[GCD[i, n] == i && GCD[i, n/i] == 1, PowerMod[i, k, n], 0], {i, n}], n]; Select[Range[1000], Mod[AA[#, #], #] == 0 &]
Showing 1-2 of 2 results.