cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A345261 a(n) = Sum_{d|n} d * rad(d).

Original entry on oeis.org

1, 5, 10, 13, 26, 50, 50, 29, 37, 130, 122, 130, 170, 250, 260, 61, 290, 185, 362, 338, 500, 610, 530, 290, 151, 850, 118, 650, 842, 1300, 962, 125, 1220, 1450, 1300, 481, 1370, 1810, 1700, 754, 1682, 2500, 1850, 1586, 962, 2650, 2210, 610, 393, 755, 2900, 2210, 2810, 590
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2021

Keywords

Comments

If p is prime, a(p) = Sum_{p|d} d * rad(d) = 1*1 + p*p = p^2 + 1.
Inverse Möbius transform of n * rad(n). - Wesley Ivan Hurt, Mar 31 2025

Examples

			a(10) = Sum_{d|10} d * rad(d) = 1*1 + 2*2 + 5*5 + 10*10 = 1 + 4 + 25 + 100 = 130.
		

Crossrefs

Cf. A007947 (rad), A066872, A345263.

Programs

  • Mathematica
    Table[Sum[i (1 - Ceiling[n/i] + Floor[n/i]) Product[k^((PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[i/k] + Floor[i/k])), {k, i}], {i, n}], {n, 80}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    a(n) = sumdiv(n, d, d*rad(d)); \\ Michel Marcus, Jun 12 2021

Formula

a(prime(n)) = A066872(n). - Michel Marcus, Jun 12 2021
Showing 1-1 of 1 results.