cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214852 Indices of Fibonacci numbers with the same number of 1's and 0's in their binary representation.

Original entry on oeis.org

3, 36, 42, 59, 116, 156, 168, 211, 237, 246, 280, 335, 355, 399, 404, 416, 433, 442, 569, 580, 652, 698, 761, 770, 865, 897, 940, 989, 1041, 1049, 1101, 1144, 1214, 1286, 1335, 1352, 1369, 1395, 1698, 1726, 1810, 1928, 1940, 1951, 2055, 2159, 2326, 2332
Offset: 1

Views

Author

Alex Ratushnyak, Mar 08 2013

Keywords

Comments

Conjecture: the sequence is infinite.
The sequence of Fibonacci numbers with the same number of 1's and 0's in their binary representation begins: 2, 14930352, 267914296, ... = A259407.

Examples

			Fibonacci(36) = 14930352 = 111000111101000110110000_2, twelve 1's and twelve 0's, therefore 36 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Module[{f = IntegerDigits[Fibonacci[n], 2]}, Count[f, 0] == Count[f, 1]]; Select[Range[3000], fQ] (* T. D. Noe, Mar 08 2013 *)
    Position[Fibonacci[Range[2500]],?(DigitCount[#,2,1]==DigitCount[#,2,0]&)]//Flatten (* _Harvey P. Dale, Aug 17 2025 *)
  • Python
    def count10(x):
        c0, c1, m = 0, 0, 1
        while m<=x:
          if x&m:
            c1+=1
          else:
            c0+=1
          m+=m
        return c0-c1
    prpr, prev = 0,1
    TOP = 3000
    for i in range(1,TOP):
        if count10(prev)==0:
            print(i, end=", ")
        prpr, prev = prev, prpr+prev
    
  • Python
    from sympy import fibonacci
    print([n for n in range(3000) if (f := bin(fibonacci(n))[2:]).count('0') == f.count('1')]) # David Radcliffe, May 31 2025