A214852 Indices of Fibonacci numbers with the same number of 1's and 0's in their binary representation.
3, 36, 42, 59, 116, 156, 168, 211, 237, 246, 280, 335, 355, 399, 404, 416, 433, 442, 569, 580, 652, 698, 761, 770, 865, 897, 940, 989, 1041, 1049, 1101, 1144, 1214, 1286, 1335, 1352, 1369, 1395, 1698, 1726, 1810, 1928, 1940, 1951, 2055, 2159, 2326, 2332
Offset: 1
Examples
Fibonacci(36) = 14930352 = 111000111101000110110000_2, twelve 1's and twelve 0's, therefore 36 is in the sequence.
Links
- David Radcliffe, Table of n, a(n) for n = 1..10000 (terms 1..400 from T. D. Noe).
Programs
-
Mathematica
fQ[n_] := Module[{f = IntegerDigits[Fibonacci[n], 2]}, Count[f, 0] == Count[f, 1]]; Select[Range[3000], fQ] (* T. D. Noe, Mar 08 2013 *) Position[Fibonacci[Range[2500]],?(DigitCount[#,2,1]==DigitCount[#,2,0]&)]//Flatten (* _Harvey P. Dale, Aug 17 2025 *)
-
Python
def count10(x): c0, c1, m = 0, 0, 1 while m<=x: if x&m: c1+=1 else: c0+=1 m+=m return c0-c1 prpr, prev = 0,1 TOP = 3000 for i in range(1,TOP): if count10(prev)==0: print(i, end=", ") prpr, prev = prev, prpr+prev
-
Python
from sympy import fibonacci print([n for n in range(3000) if (f := bin(fibonacci(n))[2:]).count('0') == f.count('1')]) # David Radcliffe, May 31 2025
Comments