cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214859 Triangle read by rows, T(n,k) = n^2 - k*(k+1)/2 if k*(k+1)/2 <= n^2.

Original entry on oeis.org

0, 1, 0, 4, 3, 1, 9, 8, 6, 3, 16, 15, 13, 10, 6, 1, 25, 24, 22, 19, 15, 10, 4, 36, 35, 33, 30, 26, 21, 15, 8, 0, 49, 48, 46, 43, 39, 34, 28, 21, 13, 4, 64, 63, 61, 58, 54, 49, 43, 36, 28, 19, 9, 81, 80, 78, 75, 71, 66, 60, 53, 45, 36, 26, 15, 3, 100, 99, 97
Offset: 0

Views

Author

Philippe Deléham, Mar 09 2013

Keywords

Comments

Row lengths are in A214857.

Examples

			Triangle begins:
    0;
    1,   0;
    4,   3,   1;
    9,   8,   6,   3;
   16,  15,  13,  10,   6,   1;
   25,  24,  22,  19,  15,  10,   4;
   36,  35,  33,  30,  26,  21,  15,  8,  0;
   49,  48,  46,  43,  39,  34,  28, 21, 13,  4;
   64,  63,  61,  58,  54,  49,  43, 36, 28, 19,  9;
   81,  80,  78,  75,  71,  66,  60, 53, 45, 36, 26, 15,  3;
  100,  99,  97,  94,  90,  85,  79, 72, 64, 55, 45, 34, 22,  9;
  121, 120, 118, 115, 111, 106, 100, 93, 85, 76, 66, 55, 43, 30, 16, 1;
  ...
		

Crossrefs

Cf. Diagonals: A000217, A034856, A055999,

Programs

  • Mathematica
    Table[s = {}; k = 0; While[tri = k*(k + 1)/2; tri <= n^2, AppendTo[s, n^2 - tri]; k++]; s, {n, 0, 10}] (* T. D. Noe, Mar 11 2013 *)

Formula

T(2*n,n) = A022264(n).
T(n,n) = n*(n-1)/2 = A000217(n-1).