cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214864 Numbers k such that k XOR 10 = k - 10.

Original entry on oeis.org

10, 11, 14, 15, 26, 27, 30, 31, 42, 43, 46, 47, 58, 59, 62, 63, 74, 75, 78, 79, 90, 91, 94, 95, 106, 107, 110, 111, 122, 123, 126, 127, 138, 139, 142, 143, 154, 155, 158, 159, 170, 171, 174, 175, 186, 187, 190, 191, 202
Offset: 1

Views

Author

Brad Clardy, Mar 09 2013

Keywords

Crossrefs

Programs

  • Magma
    XOR := func;
    m:=10;
    for n in [1 .. 250] do
    if (XOR(n, m) eq n-m) then n; end if;
    end for;
    
  • Mathematica
    Select[Range[200], BitXor[#, 10] == # - 10 &] (* Alonso del Arte, Oct 26 2013 *)
  • Python
    def A214864(n): return (10,11,14,15)[n-1&3]+((n-1&-4)<<2) # Chai Wah Wu, Jan 30 2023

Formula

a(n) = 4*n + 6 + (3*(-1)^n+1)/2 + 2*(-1)^((2*n-1+(-1)^n)/4) for n >= 0.
a(n) = A016825(n) + A216178(n-1) for n > 0.
G.f. x*(10+x+3*x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Mar 10 2013
Numbers k such that k mod 16 is one of {10, 11, 14, 15}. - Joerg Arndt, Mar 15 2013
a(n) = 16*floor((n-1)/4) + ((n-1) mod 2) + 4*floor(((n-1) mod 4)/2) + 10. - Gary Detlefs, Oct 26 2013 [corrected by Jason Yuen, Oct 27 2024]