A214966 Array T(m,n) = greatest k such that 1/n + ... + 1/(n+k-1) <= m, by rising antidiagonals.
1, 3, 2, 10, 9, 4, 30, 29, 16, 6, 82, 81, 48, 22, 7, 226, 225, 134, 67, 28, 9, 615, 614, 370, 188, 86, 35, 11, 1673, 1672, 1012, 517, 241, 105, 41, 12, 4549, 4548, 2756, 1413, 664, 295, 124, 47, 14, 12366, 12365, 7498, 3847, 1814, 811, 348, 143, 54
Offset: 1
Examples
Northwest corner (the array is read by northeast antidiagonals): 1 2 4 6 7 9 3 9 16 22 28 35 10 29 48 67 86 105 30 81 134 188 241 295 82 225 370 517 664 811 226 614 1012 1413 1814 2216
Links
- Clark Kimberling, Rising antidiagonals n = 1..60, flattened
Programs
-
Mathematica
t = Table[1 + Floor[x /. FindRoot[HarmonicNumber[N[x + z, 150]] - HarmonicNumber[N[z - 1, 150]] == m, {x, Floor[-E^bm/2 + (-1 + E^m) z]}, WorkingPrecision -> 100]], {m, 1, #}, {z, 1, #}] &[12] TableForm[t] u = Flatten[Table[t[[i - j]][[j]], {i, 2, 12}, {j, 1, i - 1}]] (* Peter J. C. Moses, Aug 29 2012 *)
Comments