cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214979 A179180 - A214977.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 1, 2, 3, 2, 2, 1, 0, 1, 0, 0, 0, 1, 2, 3, 4, 6, 4, 3, 3, 2, 2, 1, 2, 2, 1, 1, 1, 0, 0, 1, 2, 3, 4, 6, 6, 7, 9, 7, 6, 5, 5, 5, 4, 4, 4, 2, 1, 2, 2, 3, 2, 2, 1, 0, 1, 0, 0, 0, 1, 2, 3, 4, 6, 6, 7, 9, 9, 10, 11, 13, 15, 13, 12, 11, 9, 8, 8, 8, 8
Offset: 1

Views

Author

Clark Kimberling, Oct 22 2012

Keywords

Comments

Let U(n) and V(n) be the number of terms in the Lucas representations and Zeckendorf (Fibonacci) representations, respectively, of all the numbers 1,2,...,n. Then a(n) = V(n) - U(n). Conjecture: a(n) >= 0 for all n, and a(n) = 0 for infinitely many n.

Examples

			(See A214977 and A179180.)
		

Crossrefs

Programs

  • Mathematica
    z = 200;
    s = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 70}]]];
    t1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2,1]], # > 0 &]] &, Range[z]];
    u[n_] := Sum[t1[[k]], {k, 1, n}]
    u1 = Table[u[n], {n, 1, z}] (* A214977 *)
    s = Reverse[Table[Fibonacci[n + 1], {n, 1, 70}]];
    t2 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2,1]], # > 0 &]] &, Range[z]];
    v[n_] := Sum[t2[[k]], {k, 1, n}]
    v1 = Table[v[n], {n, 1, z}]  (* A179180 *)
    w=v1-u1 (* A214979 *)
    Flatten[Position[w, 0]]  (* A214980 *)
    (* Peter J. C. Moses, Oct 18 2012 *)