cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214993 Power floor sequence of (golden ratio)^5.

Original entry on oeis.org

11, 121, 1341, 14871, 164921, 1829001, 20283931, 224952241, 2494758581, 27667296631, 306835021521, 3402852533361, 37738212888491, 418523194306761, 4641493350262861, 51474950047198231, 570865943869443401, 6331000332611075641, 70211869602591275451
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2012

Keywords

Comments

See A214992 for a discussion of power floor sequence and also the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = (golden ratio)^5, and the limit p1(r) = (3/22)*(3+2*sqrt(5)).

Examples

			a(0) = [r] = [11.0902] = 11, where r = (1+sqrt(5))^5.
a(1) = [11*r] = 121; a(2) = [121*r] = 1341.
		

Crossrefs

Programs

  • Magma
    I:=[11,121,1341]; [n le 3 select I[n] else 12*Self(n-1)-10*Self(n-2)-Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 01 2018
  • Mathematica
    x = GoldenRatio^5; z = 30; (* z = # terms in sequences *)
    z1 = 100; (* z1 = # digits in approximations *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A214993 *)
    Table[p2[n], {n, 0, z}]  (* A049666 *)
    Table[p3[n], {n, 0, z}]  (* A015457 *)
    Table[p4[n], {n, 0, z}]  (* A214994 *)
    LinearRecurrence[{12,-10,-1}, {11,121,1341}, 30] (* G. C. Greubel, Feb 01 2018 *)
  • PARI
    Vec((11 - 11*x - x^2) / ((1 - x)*(1 - 11*x - x^2)) + O(x^20)) \\ Colin Barker, Nov 13 2017
    

Formula

a(n) = [x*a(n-1)], where x=((1+sqrt(5))/2)^5, a(0) = [x].
a(n) = 1 (mod 10).
a(n) = 12*a(n-1) - 10*a(n-2) - a(n-3).
G.f.: (11 - 11*x - x^2)/(1 - 12*x + 10*x^2 + x^3).
a(n) = (1/55)*(5 + (300-134*sqrt(5))*((11-5*sqrt(5))/2)^n + 2*(11/2+(5*sqrt(5))/2)^n*(150+67*sqrt(5))). - Colin Barker, Nov 13 2017