cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215036 2 followed by "1,0" repeated.

Original entry on oeis.org

2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 06 2012

Keywords

Comments

Take the first n primes and combine them with coefficients +1 and -1; then a(n) is the smallest number (in absolute value) that can be obtained.
For example, a(1) = 2, a(2) = 1 from 3-2 = 1; a(3) = 0 from -2-3+5 = 0; a(11) = 0 from 2-3-5-7+11-13+17+19-23-29+31 = 0.
Comment from Franklin T. Adams-Watters, Aug 05 2012: Sketch of proof that the above sum of primes results in this sequence. If S_n is the set of possible values of the signed sums for the first n primes, then S_{n+1} = S_n U (S_n + prime(n+1)) U (S_n - prime(n+1)). Beyond about n=4, this will be everything even or everything odd in an interval around zero, and then a fringe on either side; the size of the interval will be 2 * A007504(n) - k for some small k. Recursively, since prime(n) << A007504(n), this will continue to hold. Hence the sequence continues to alternate 0's and 1's. A quite modest estimate on the distribution of primes suffices to complete the proof.
For number of solutions see A022894, A113040; also A083309.

Crossrefs

Essentially the same as A135528, A059841, A000035.

Programs