A215038 Partial sums of A066259: a(n) = Sum_{k=0..n} F(k+1)^2*F(k), n>=0, with the Fibonacci numbers F=A000045.
0, 1, 5, 23, 98, 418, 1770, 7503, 31779, 134629, 570284, 2415788, 10233404, 43349461, 183631161, 777874251, 3295127934, 13958386366, 59128672790, 250473078515, 1061020985255, 4494557022121, 19039249069560, 80651553307128
Offset: 0
Examples
a(2) = 0 + 1^2*1 + 2^2*1 = 1 + 4 = 5.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,3,-9,2,1).
Formula
O.g.f.: x*(1+x)/((1+x-x^2)*(1-4*x-x^2)*(1-x)) (from A066259).
E.g.f.: (2*exp(-x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2)) + exp(2*x)*(15*cosh(sqrt(15)*x) + 7*sqrt(5)*sinh(sqrt(5)*x)) - 25*exp(x))/50. - Stefano Spezia, Oct 28 2024
Comments