A215052 a(n) = (binomial(n,5) - floor(n/5)) / 5.
1, 4, 11, 25, 50, 92, 158, 257, 400, 600, 873, 1237, 1713, 2325, 3100, 4069, 5266, 6729, 8500, 10625, 13155, 16145, 19655, 23750, 28500, 33981, 40274, 47466, 55650, 64925, 75397, 87178, 100387, 115150, 131600, 149878, 170132, 192518, 217200
Offset: 6
Links
- M. P. Saikia and J. Vogrinc, A simple number theoretic result. (arxiv.1207.6707v1 [mathNT]), J. Assam Academy of Mathematics, Vol. 3, 90-96, 2010.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,2,-5,10,-10,5,-1).
Formula
a(n) = (1/5)*{binomial(n,5) - floor(n/5)}.
O.g.f.: sum {n>=0} a(n)*x^n = x^6*(1-x+x^2)/((1-x^5)*(1-x)^5) = x^6*(1 + 4*x + 11*x^2 + 25*x^3 + ...).
Comments