A215060 Triangle read by rows, e.g.f. exp(x*(z+1/2))/((exp(3*x/2) + 2*cos(sqrt(3)*x/2))/3).
1, 0, 1, 0, 0, 1, -1, 0, 0, 1, 0, -4, 0, 0, 1, 0, 0, -10, 0, 0, 1, 19, 0, 0, -20, 0, 0, 1, 0, 133, 0, 0, -35, 0, 0, 1, 0, 0, 532, 0, 0, -56, 0, 0, 1, -1513, 0, 0, 1596, 0, 0, -84, 0, 0, 1, 0, -15130, 0, 0, 3990, 0, 0, -120, 0, 0, 1, 0, 0, -83215, 0
Offset: 0
Examples
[0] [1] [1] [0, 1] [2] [0, 0, 1] [3] [-1, 0, 0, 1] [4] [0, -4, 0, 0, 1] [5] [0, 0, -10, 0, 0, 1] [6] [19, 0, 0, -20, 0, 0, 1] [7] [0, 133, 0, 0, -35, 0, 0, 1] [8] [0, 0, 532, 0, 0, -56, 0, 0, 1] [9] [-1513, 0, 0, 1596, 0, 0, -84, 0, 0, 1]
Programs
-
Sage
def triangle(f, dim): var('x,z') s = f.series(x, dim+2) P = [factorial(i)*s.coefficient(x,i) for i in range(dim)] for k in range(dim): print([k], [P[k].coefficient(z,i) for i in (0..k)]) def A215060_triangle(dim) : var('x, z') f = exp(x*(z+1/2))/((exp(3*x/2)+2*cos(sqrt(3)*x/2))/3) return triangle(f, dim) A215060_triangle(12)
Comments