A215078 Triangle of sums of the first k n-th powers multiplied by binomial(n,k), read by rows.
0, 0, 1, 0, 2, 5, 0, 3, 27, 36, 0, 4, 102, 392, 354, 0, 5, 330, 2760, 6500, 4425, 0, 6, 975, 15880, 73350, 123090, 67171, 0, 7, 2709, 81060, 654500, 2033325, 2637327, 1200304, 0, 8, 7196, 381808, 5064780, 25926824, 59992660, 63259168, 24684612, 0, 9, 18468, 1696464, 35574840, 281668590, 1034305524, 1896003648, 1681960464, 574304985, 0, 10, 46125, 7208880, 232816500, 2740317300, 14981494710, 42457884000, 64240088580, 49143419250, 14914341925
Offset: 0
Examples
0 0 1 0 2 5 0 3 27 36 0 4 102 392 354 0 5 330 2760 6500 4425 0 6 975 15880 73350 123090 67171 0 7 2709 81060 654500 2033325 2637327 1200304
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A215078 := proc(n,k) binomial(n,k)*add(j^n,j=1..k) ; end proc: seq(seq(A215078(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Jan 27 2023
-
Mathematica
Flatten[Table[Table[Sum[j^n, {j, 1, k}]*Binomial[n, k], {k, 0, n}], {n, 0, 10}], 1]
Formula
T(n,k) = binomial(n,k)*sum(j^n, j=1..k)
Comments