cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215078 Triangle of sums of the first k n-th powers multiplied by binomial(n,k), read by rows.

Original entry on oeis.org

0, 0, 1, 0, 2, 5, 0, 3, 27, 36, 0, 4, 102, 392, 354, 0, 5, 330, 2760, 6500, 4425, 0, 6, 975, 15880, 73350, 123090, 67171, 0, 7, 2709, 81060, 654500, 2033325, 2637327, 1200304, 0, 8, 7196, 381808, 5064780, 25926824, 59992660, 63259168, 24684612, 0, 9, 18468, 1696464, 35574840, 281668590, 1034305524, 1896003648, 1681960464, 574304985, 0, 10, 46125, 7208880, 232816500, 2740317300, 14981494710, 42457884000, 64240088580, 49143419250, 14914341925
Offset: 0

Views

Author

Olivier Gérard, Aug 02 2012

Keywords

Comments

If one starts the sum at j=0, the initial term T(0,0) is 1.

Examples

			  0
  0  1
  0  2    5
  0  3   27       36
  0  4  102      392      354
  0  5  330     2760     6500     4425
  0  6  975    15880    73350   123090    67171
  0  7 2709    81060   654500  2033325  2637327  1200304
		

Crossrefs

Binomial convolution of A215083.
Cf. A215077 (row sums), A031971 (diagonal)

Programs

  • Maple
    A215078 := proc(n,k)
            binomial(n,k)*add(j^n,j=1..k) ;
    end proc:
    seq(seq(A215078(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Jan 27 2023
  • Mathematica
    Flatten[Table[Table[Sum[j^n, {j, 1, k}]*Binomial[n, k], {k, 0, n}], {n, 0, 10}], 1]

Formula

T(n,k) = binomial(n,k)*sum(j^n, j=1..k)